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Deep Learning (DL) methods are powerful analytical tools for microscopy and can outper-

form conventional image processing pipelines. Despite the enthusiasm and innovations

fuelled by DL technology, the need to access powerful and compatible resources to train DL

networks leads to an accessibility barrier that novice users often find difficult to overcome.

Here, we present ZeroCostDL4Mic, an entry-level platform simplifying DL access by lever-

aging the free, cloud-based computational resources of Google Colab. ZeroCostDL4Mic

allows researchers with no coding expertise to train and apply key DL networks to perform

tasks including segmentation (using U-Net and StarDist), object detection (using YOLOv2),

denoising (using CARE and Noise2Void), super-resolution microscopy (using Deep-STORM),

and image-to-image translation (using Label-free prediction - fnet, pix2pix and CycleGAN).

Importantly, we provide suitable quantitative tools for each network to evaluate model

performance, allowing model optimisation. We demonstrate the application of the platform

to study multiple biological processes.
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Over the past decade, the amount and complexity of
bioimages have increased exponentially, translating into a
need for more complex image analysis. To combat this

data challenge, new processing tools, including artificial intelli-
gence (AI) methods, have been developed. In particular, deep
learning (DL), a subset of AI that is capable of independently
extracting relevant features from images to perform specific tasks,
now often outperforms conventional image-processing strategies,
as was demonstrated for image classification1 or segmentation2.
Lately, DL is increasingly employed for high-performance image-
analysis tasks such as object detection3,4, image segmentation2,5,6

and image restoration (improvement in image resolution or
denoising)7,8. In particular, the ability to automatically recognise
objects and features in images (for instance, cancer cells in biopsy
samples) is well underway to revolutionise how clinical samples
are analysed (digital pathology)4,9. These capabilities have also led
to an increased interest in DL in standard image-analysis work-
flows such as nuclear segmentation5,10,11, a common task that can
be a significant challenge if done manually12. However, the
potentially game-changing capabilities of DL have, to date,
remained out of reach for most researchers without a strong
background in computer sciences.

A classical DL pipeline requires a computer algorithm (called
“artificial neural network” or “DL network” here for simplicity)
to be trained on a training dataset to generate a “model” that
can perform a specific task. The training step is crucial as it will
dictate the specificity and performance of the model. Generally,
there are two different approaches to this step, using either
supervised or self-supervised training13. In the supervised
approach, paired input and output images are required. The
network learns by attempting to find a mapping from the input
to the desired output images, on an image-by-image basis. In
the self-supervised approach, networks learn implicit patterns
in the data and therefore, do not require paired input and
output images. For instance, in a supervised image restoration
task, a DL network, such as content-aware image restoration
(CARE)7, is trained using a dataset containing many examples
of noisy and paired high-quality images. Once trained, the
model can be used to denoise images similar to the noisy images
encountered during training. Training these DL networks is
computationally expensive and often requires coding and
computational expertise. In many biomedical research labora-
tories, neither of these requirements are readily available, hin-
dering the adoption of an ever-growing number of powerful DL
methods.

To train DL networks, computer scientists typically set up local
servers with high computational power or purchase expensive
DL-ready workstations (Fig. 1a). This constitutes a robust way to
develop and deploy DL approaches but requires technical know-
how and financial commitment to set up and maintain. An
alternative is to purchase computational resources provided by
cloud services to train DL models. Trained DL models can then
be used directly in the cloud or downloaded and used locally
(Fig. 1a). Several software packages taking these approaches have
been developed for the bioimaging community, especially trying
to simplify the interface with DL hardware (i.e., U-Net2,14,
cDeep3m10, DeepCell Kiosk15, DeepMIB16, NucleAIzer17, YAPiC
(https://yapic.github.io/yapic/), ImJoy18, ilastik19, CellProfiler20

and Noise2Void8 and DenoiSeg Fiji plugin11,21). Another solu-
tion is to take advantage of model “zoos” which provide trained
DL models with high reusability and versatility potential (Fig. 1a).
These can be used directly to obtain predictions from new data
using web interfaces or ImageJ plugins (i.e., CellPose22,
DeepImageJ23, StarDist Fiji plugin5,6). Using pretrained models
alleviates the computational requirement of training and has
therefore become popular for tasks such as cellular and nuclear

segmentation6,17,22. However, using pretrained models bears the
risk of predicting incorrect structures and artefacts if they are
used on unseen data too dissimilar to the data they were ori-
ginally trained on24,25. This is also supported by observations that
models perform best on datasets very similar to the training
datasets7,25–27 (see Supplementary Note 1 and Supplementary
Fig. 1). Training will therefore often be necessary for users to
achieve optimal performance of models on their own datasets.
Given these considerations, there is a need for a tool that seam-
lessly enables users to train, validate and experiment with DL
tools for various image-analysis tasks without the constraints of
expensive resources and the potential drawbacks of pretrained
models.

Here, we developed ZeroCostDL4Mic, an entry-level, cloud-
based DL-deployment platform (Fig. 1b) that simplifies DL use
for microscopy (Supplementary Movie 1). ZeroCostDL4Mic is a
unified collection of self-explanatory Jupyter Notebooks, featur-
ing an easy-to-use graphical user interface (GUI) (Supplementary
Fig. 2) that requires only a web browser and a Google account for
a user to run any of our DL-based tasks (Fig. 1c). All calculations
are performed in the cloud using Google Colaboratory (Colab for
short), circumventing the need to purchase or install graphical
processing units (GPUs) and associated software. Using
ZeroCostDL4Mic does not require prior knowledge in coding.
Researchers can, in a few mouse clicks and aided by a common
workflow, install all needed software dependencies, upload their
imaging data and run networks for training and prediction
(Supplementary Movie 1). Within our framework, models are
comprehensively evaluated for performance and reliability and
can be directly applied to new data automatically. Models can also
be ported to local machines to obtain predictions for which
accessible interfaces are available (DeepImageJ23, StarDist5,6,
CARE7). Additionally, ZeroCostDL4Mic guides researchers on
how to generate the training data necessary for DL, allowing them
to develop a deeper understanding of DL methods while experi-
menting with parameter optimisation. We integrated a broad
range of powerful DL bioimage analysis tasks within
ZeroCostDL4Mic (Fig. 1c and Supplementary Movie 2). These
include several supervised and self-supervised DL networks for
image segmentation and object detection (using U-Net2,14,28,
StarDist5,6 and YOLOv23), image denoising and restoration
(using CARE7 and Noise2Void8), super-resolution microscopy
(using Deep-STORM29) and image-to-image translations (using
label-free prediction—fnet26, pix2pix30 and CycleGAN31).

Results
The ZeroCostDL4Mic framework. The ZeroCostDL4Mic plat-
form is built around the availability of cloud computing and the
versatility of Jupyter Notebooks (Fig. 1b). Jupyter Notebooks can
efficiently and interactively run Python code, currently the default
language to deploy DL applications. For cloud computing, we
focused on developing the platform around Google Colab as it
provides an appropriate range of resources for free, e.g. GPU,
random access memory (RAM) and disk space. These online
resources provide researchers interested in DL an entrance to the
field without the need to purchase and maintain a local infra-
structure dedicated to DL and allow the versatility to easily run
multiple networks without reconfiguring the infrastructure. To
make ZeroCostDL4Mic as easy to use as possible, we exploited
the Jupyter Notebooks’ code readability and Colab’s integration
of code input via a graphical user interface (GUI). While
ZeroCostDL4Mic relies on Google Colab to run, our notebooks
can be adapted to run on other cloud-based platforms such as
Deepnote (https://deepnote.com/) or FloydHub (https://www.
floydhub.com/).
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For each provided DL network, the original network architecture
is packaged in our standard workflow that every ZeroCostDL4Mic
notebook follows (Supplementary Fig. 2) and which recapitulates
crucial steps in DL: from data loading and training to model
evaluation and inference on new data. To ensure that users with
little to no coding expertise can interactively work through the
pipeline, we added a textual introduction to each analytical step,
explaining the basis for the procedure and providing instructions.
To do this, we engaged with colleagues from the imaging and
biomedical research community as beta testers. While the under-
lying code is hidden by default, it remains accessible, allowing users
to learn, explore and edit the notebooks’ programmatic structure.

A clear issue with DL is the need to validate the performance of
each model on data for which the desired output is known
(ground truth). With ZeroCostDL4Mic, we wanted to streamline
the evaluation of model performance as much as possible, so we

integrated the quality control (QC) step where quantitative
metrics estimate a model’s prediction accuracy by comparing it to
ground-truth data. These metrics vary from one network to
another to cater to the varied data output from the networks that
we implemented (Supplementary Note 2). Also, to make this
assessment easier, we decided to spatially map the potential
discrepancies, allowing a visual way to observe artefacts linked to
specific structures in the image.

In each notebook, we also included two strategies commonly
used to improve the training of DL models. Firstly, we added a
range of data augmentation steps, using the Augmentor32 or
imgaug (https://github.com/aleju/imgaug) python packages that
can be applied to the training data to effectively increase the
diversity of the training data without requiring the user to
produce and provide more data (Supplementary Note 3).
Secondly, we also included the possibility to perform transfer

Fig. 1 Using DL for microscopy. a Paths to exploiting DL. Training on local servers and inference on local machines (or servers) (first row), cloud-based
training and local inference (second row), cloud-based training and inference (third row) and pretrained networks on standard machines (fourth row).
b Overview of ZeroCostDL4Mic. The workflow of ZeroCostDL4Mic, featuring data transfer through Google Drive, training, quality control and prediction
via Google Colab. After running a network, trained models, quality control and prediction results can then be downloaded to the user’s machine. c Overview
of the bioimage analysis tasks currently implemented within the ZeroCostDL4Mic platform. Datasets from top left to bottom right: U-Net—ISBI 2012
Neuronal Segmentation Dataset78,79, StarDist—nuclear marker (SiR-DNA) in DCIS.COM cells, YOLOv2—bright field in MDA-MB-231 cells, N2V—actin
label (paxillin-GFP) in U-251-glioma cells, CARE—actin label Lifeact-RFP in DCIS.COM cells, Deep-STORM—actin-labelled glial cell, fnet—bright-field and
mitochondrial label TOM20-Alexa Fluor 594 in HeLa cells, pix2pix—actin label Lifeact-RFP and nuclear labels in DCIS.COM cells, CycleGAN—tubulin label
in U2OS cells. All datasets are available through Zenodo (see “Data availability”) or as indicated in the GitHub repository.
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learning33 via the loading of a pretrained model as a starting
model rather than initialising training with a blank model
(Supplementary Note 4). This powerful approach allows the
platform to benefit from the growing availability of pretrained
models from model zoos without compromising on the quality of
the performance of a model on the specific data type provided by
the user. This can also have several advantages in terms of
shortening training times and reducing the amount of required
training data. Both of these are demonstrated and discussed in
detail in a later section of this paper.

Using Google Colab for DL for microscopy. By using Google
Colab, ZeroCostDL4Mic provides free access to the high-
performance computing resources needed to run the broad
range of DL networks implemented here (Fig. 1). Google Colab is
widely used in the data science community for developing DL
projects34–36. However, to productively make use of these
resources, users typically need to possess expert knowledge which
has drastically limited its uptake by the biomedical research
community. By establishing a user-friendly and efficient interface
with Google Colab, we aim to leverage this cloud-computing
system to deploy state-of-the-art DL models for microscopy.

Google Colab provides access to remote virtual machines with
free but finite resources which are made available for a specific
runtime duration (maximum 12 h, see Supplementary Note 5 for
details). The runtime duration is limited as Google Colab is
intended for short, interactive use and not for long-running
background computations (such as cryptocurrency mining).
These resources are well suited for running simple DL pipelines.
They include disk space to store training data, trained models and
inference results (~68 GB), RAM to store variables and partial
blocks of data (12 or 25 GB, depending on the session), and access
to a high-end GPU (typically Tesla P100, T4 or K80). With these
resources, training DL models in ZeroCostDL4Mic only takes a
few minutes to a few hours and allows users to produce the results
shown in Figs. 2–9 (see Supplementary Table 1 for details of the
dataset used and Supplementary Table 2 for training parameters
and times). Installing the necessary libraries takes less than a
minute. Training times vary depending on the network used and
the assigned GPU (see Supplementary Table 3 for install times
and training speeds), but providing a speed improvement ranging
between 5× and 200× over central processing unit (CPU)
computation time. Once a model is trained, and its performance
validated, it can be applied to new data (see Supplementary
Table 4 for inference speeds).

Resources are typically sufficient to train models on real
biological data and to provide the results presented in this paper.
We do, however, also discuss strategies to overcome potential
limitations (Supplementary Note 5). In particular, training a
model with Colab may impose an upper limit on the number of
images that can be used during training (typically dictated by the
availability of sufficient RAM, see Supplementary Table 5 for
breaking points on training capabilities within Google Colab, and
Supplementary Table 6 for inference throughput). Again, these
limitations will strongly depend on the network and the size of
the provided images. When generating predictions, users can
easily and quickly batch process thousands of images, limited by
the available storage on Google Drive (15 GB for a free account).

Considering the resources available with Colab, we believe that
ZeroCostDL4Mic is well suited for:

1. Prototyping image-analysis workflows and pipelines with-
out financial investment.

2. Executing small-to-medium-size projects (a few 10’s of GB
of data) compared to large-scale projects often encountered
in machine vision research.

3. Short-term projects not requiring a permanent investment
in DL infrastructure.

4. As a resource for DL enthusiasts and students to learn about
DL methods and state-of-the-art architectures, such as U-
Net2,28 or (generative adversarial networks) GANs30,31.

However, larger-scale (>20 GB of data) and longer-term
analysis pipelines may benefit from the investment in paid-for
cloud-based platforms (like Paperspace (https://www.paperspace.
com/), Amazon Web Services (AWS) (https://aws.amazon.com/)
or FloydHub) or local infrastructure, therefore tuning the
resources to the needs of the specific in-house application.

In addition, ZeroCostDL4Mic is adjustable to run outside
Google Colab (see Supplementary Note 6 and Supplementary
Fig. 4 for running ZeroCostDL4Mic notebooks within Deepnote
and FloydHub).

Within ZeroCostDL4Mic, we implemented several DL-based
image-analysis tools, including networks for image segmentation
and object detection, image denoising and restoration, super-
resolution microscopy and image-to-image translations. In the
following sections, we introduce each of the tasks and DL
networks that are currently available on our platform, showcasing
results obtained by using Colab.

Image segmentation and object detection. Manual segmentation
is a time-consuming and challenging task that typically requires
expert knowledge and can be a bottleneck for studies that aim to
quantify large datasets12,37. Hence, DL tools are of great interest in
this field, as they can combine expert-level performance with high-
throughput analysis4. Within ZeroCostDL4Mic, we implemented
two networks, U-Net2,28 and StarDist5,6, which perform state-of-
the-art image segmentation, both handling 2D and 3D imaging
datasets. To illustrate the applicability of our ZeroCostDL4Mic U-
Net 2D and 3D notebooks, we trained U-Net networks to segment
membranes from 2D electron microscopy (EM) images and mito-
chondria from 3D EM images (Fig. 2a, b and Supplementary
Movie 3). To showcase our StarDist notebooks, we first trained a
StarDist model to segment the nuclei of densely packed cell
monolayers (Fig. 2c). Interestingly, the trained model could detect
extra nuclei that were missed when these images were manually
labelled (Fig. 2c). In addition, to facilitate the analysis of live-cell
imaging data, the outputs generated by the StarDist notebook are
directly compatible with the popular tracking software TrackMate
which consequently enables automated cell tracking (Fig. 3d and
Supplementary Movie 4)38.

Object detection tasks have become of interest in microscopy
studies as they allow the identification of multiple classes/objects
in an image, e.g., counting pathogens or identifying cell types in
bioimages9,39. To provide object detection capabilities within
ZeroCostDL4Mic, we implemented the popular DL network
YOLOv23. To demonstrate how our YOLOv2 implementation is
applicable to the analysis of microscopy data, we annotated time-
lapses of cells migrating on cell-derived matrices in the function
of the shape taken by the cells as they migrate (“elongated” cells,
“rounded” cells, “dividing” cells and “spread-out” cells) (Fig. 3
and Supplementary Movie 5). The YOLOv2 model, trained using
ZeroCostDL4Mic, correctly classified and labelled a large fraction
of the cells in the images (as indicated by the mAP score).

Image restoration and denoising. Fluorescence live-cell imaging
has become the primary strategy to directly and dynamically
observe pathways with high molecular specificity. However, when
performing live-cell imaging experiments, low laser intensities
need to be combined with low expression of the molecule(s) of
interest to ensure the physiological relevance of the phenomenon
observed40. Therefore, live-cell imaging experiments often lead to
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the acquisition of noisy images, and denoising strategies are
becoming increasingly essential for the interpretation of data and
its further analysis.

Content-aware image restoration (CARE)7 can denoise and
improve the resolution of 2D and 3D images, using supervised

training. To illustrate the applicability of our ZeroCostDL4Mic
CARE notebooks, we trained a 3D CARE network to denoise
live-cell structured illumination microscopy (SIM) imaging
data (Fig. 4a, b and Supplementary Movie 6). To generate
a suitable training dataset, both high and low SNR images of

Fig. 2 Image-segmentation networks (U-Net and StarDist). a, b Example of data generated using the ZeroCostDL4Mic U-Net and StarDist notebooks.
a A 2D U-Net model was trained to segment neuronal membranes from EM images. This training dataset is from the 2012 ISBI segmentation challenge78.
Training source (raw data), training targets (hand-annotated binary masks), predictions (raw output of the notebook after training) and U-Net image
thresholded output are displayed, achieving an Intersection over Union (IoU) of 0.90 (see Supplementary Note 2 for details). The optimal threshold was
assessed automatically using the Quality Control section of the notebook (see Supplementary Note 3). b A 3D U-Net network was trained to segment
mitochondria from EM images. The training dataset was made available by EPFL and consists of EM images of 5 × 5 × 5 µm3 sections taken from the CA1
hippocampus region of the brain. A representative single Z slice, as well as an overlay displaying U-Net prediction and the ground truth, are displayed. 3D
reconstructions displayed were performed from U-Net predictions using Imaris (Supplementary Movie 3). c, d Example of data generated using the
ZeroCostDL4Mic StarDist notebooks. c, d A StarDist model was trained (c) to automatically detect nuclei in movies of migrating DCIS.COM cells, labelled
with SiR-DNA, to track their movement automatically (d). c Example of Training source (DCIS.COM cells labelled with SiR-DNA), Training targets
(Ground-truth masks) and StarDist prediction (IoU of 0.86) are displayed. d StarDist outputs were used to automatically track cell movement over time in
TrackMate (Supplementary Movie 4). Cell tracks were further analysed using the online platform motilitylab.net, indicating a directed movement that is
expected for such migration assays (error bars represent the standard deviation). IoU Intersection over Union.
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the actin cytoskeleton were acquired from fixed samples. The
network trained using these images was then used to
restore live-cell imaging data (Fig. 4a, b and Supplementary
Movie 6). The approach employed here is especially useful as it
can be very challenging to obtain high-quality live-cell imaging
by other means while using SIM for extended periods of
time41,42.

Noise2Void8 is a DL method capable of denoising micro-
scopy images using self-supervised learning, therefore in the

absence of a dedicated paired training dataset (Supplementary
Movies 7–9). This has the advantage that the network can be
trained directly on the data that needs processing and therefore
makes this approach very easy and powerful to use. We first
demonstrated the capabilities of our Noise2Void notebook to
denoise the movie of an ovarian carcinoma cell migrating on
cell-derived matrices (Supplementary Movie 7). Here, a single Z
stack (time point) is used to train Noise2Void, and the resulting
model is applied to the rest of the movie (Fig. 4c and

Fig. 3 Object detection (YOLOv2). Example of data generated using the ZeroCostDL4Mic YOLOv2 notebook, detecting and identifying cell shape
classification from a cell migration bright-field time-lapse dataset. a Identified cell shapes and representative examples that were hand-labelled in the
training dataset. b Input, ground truth and prediction obtained from object detection, highlighting the identification of the presence of three classes in the
field-of-view (see also Supplementary Movie 5) and an mAP of 0.60 for this field of view. mAP: mean average precision (see Supplementary Note 2 for
details). mAP mean average precision.
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Supplementary Movie 7). Next, we used the ZeroCostDL4Mic
notebook to denoise data capturing the endogenous expression
levels of a glioma cell endogenously labelled for paxillin-GFP,
migrating on polyacrylamide hydrogel (Fig. 4d and Supple-
mentary Movie 9).

In all the displayed examples, the Noise2Void models trained
in ZeroCostDL4Mic performed very well and significantly
improved the quality of the images. However, it is important to
note that, in our hands, Noise2Void did not perform well when
used to denoise the actin dataset used to train CARE (Fig. 4a).
This is likely due to the noise in this particular dataset not being
homogeneous and containing imprinted patterns from the SIM

reconstruction process. This highlights the importance of testing
a range of networks to identify which approach is most suited for
a specific dataset, underlining the need for a platform integrating
a broad range of networks.

Super-resolution microscopy. Over the last two decades, super-
resolution microscopy (SRM) has enabled cellular structures to be
observed down to the nanoscale43. SRM methods often require
the post-processing analysis of images, which can be aided by DL
strategies29,44,45. Within ZeroCostDL4Mic, we implemented
Deep-STORM29, a DL network capable of reconstructing single-
molecule localisation microscopy (SMLM) data from dense

Fig. 4 Image denoising and restoration networks (CARE and Noise2Void). Example of data generated using ZeroCostDL4Mic CARE and Noise2Void
notebooks. a, b A 3D CARE network was trained using SIM images of the actin cytoskeleton of DCIS.COM cells using fixed samples (a) to denoise live-cell
imaging data (b). Quality control metrics are as follows: mSSIM: 0.74, PSNR: 26.9 and NRMSE: 0.15. c Fixed samples were imaged using SIM to obtain low
signal-to-noise images (lifeact-RFP, Training Source) and matching high signal-to-noise (Phalloidin staining, Training Target) images, and this paired
dataset was used to train CARE. Input, ground truth and a CARE prediction are displayed (both single Z plane and maximal projections). The QC metrics
values computed directly in the CARE notebook are indicated. b The network trained in (a) was then used to restore live-cell imaging data (Supplementary
Movie 6). The low SNR image (input) and the associated CARE predictions are displayed (single plane). c Movie of an ovarian carcinoma cell labelled with
lifeact-RFP migrating on cell-derived matrices (labelled for fibronectin) denoised using Noise2Void. Both training source and Noise2Void predictions are
displayed (Supplementary Movie 7). For each channel, a single Z stack (time point) was used to train noise2Void, and the resulting model was applied to
the rest of the movie. d Movie of a glioma cell endogenously labelled for paxillin-GFP, migrating on 9.6 kPa polyacrylamide hydrogel, and imaged using an
SDC. Both training source and Noise2Void prediction are displayed (Supplementary Movie 9). A single image (time point) was used to train Noise2Void,
and the resulting model was applied to the rest of the movie. For all panels, yellow squares highlight a region of interest that is magnified.
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emitter datasets. Performing high-density SMLM reconstruction
has the advantage of achieving high-performance SMLM imaging
in poorly blinking conditions and offers the possibility of sig-
nificantly shortening the image acquisitions.

Training Deep-STORM requires raw SMLM data accompanied
by ground-truth localisation coordinates. Importantly, Deep-
STORM can be trained using simulated data. For this purpose,
we included a simulator within the ZeroCostDL4Mic notebook to
directly generate SMLM training (and test) data that can be tuned
to mimic the experimental data type that needs to be subsequently
analysed. Unlike the original Deep-STORM network, our notebook
also allows us to extract the localisation coordinates from the
reconstructed image, enabling further analysis such as drift
correction (available within the notebook) and spatial point pattern
analysis46–48.

To illustrate the capabilities of our ZeroCostDL4Mic Deep-
STORM notebook, we reconstructed the image of a glial cell,
labelled for actin and imaged using dSTORM49 (Fig. 5a, b and
Supplementary Movie 10), and the image of a cancer cell
stained for tubulin and imaged using DNA-PAINT50 (Fig. 5c,
d). For comparison, the same data were processed using a
Multi-Emitter Maximum Likelihood Estimation (ME-MLE)
implemented in ThunderSTORM51. Of note, Deep-STORM led
to high-quality reconstruction in a fraction of the time
necessary for ME-MLE to produce the reconstructed image.

In addition, a SQUIRREL52 analysis of these reconstructions
showed that Deep-STORM had better agreement with the
equivalent wide-field image, highlighting better linearity in the
reconstructions when compared to reconstructions based on
ME-MLE localisation (Fig. 5b, d).

Image-to-image translation. Image-to-image translation refers
to a transformation from one type of image into another, such as
by predicting a fluorescent label from bright-field images or by
predicting a fluorescent label from another fluorescent label.
Within ZeroCostDL4Mic, we implemented three networks, label-
free prediction (fnet)26, pix2pix30 and CycleGAN31 capable of
performing image-to-image translations. Although label-free
prediction (fnet) and pix2pix are based on supervised learning,
CycleGAN trains in a self-supervised manner without the need
for paired ground-truth data.

Therefore, performing image-to-image translation using fnet
and pix2pix requires the user to provide a paired dataset for
training (Fig. 6a). The fnet26 network was developed to perform
label-free predictions from bright-field and EM images. It is based
on a U-Net architecture and training requires paired 3D stacks of
two channels (e.g. fluorescence and bright-field images). To
showcase the ZeroCostDL4Mic fnet notebook, we trained a fnet
model to predict TOM20 mitochondrial labelling from bright-
field images (Fig. 6b). In contrast, pix2pix30 uses GANs53 to

Fig. 5 Super-resolution microscopy network (Deep-STORM). Example of data that can be generated using the ZeroCostDL4Mic Deep-STORM notebook.
a Single frame of the raw BIN10 dataset, phalloidin labelling of a glial cell, and the wide-field image. b Top: Comparison of ThunderSTORM51 Multi-Emitter
Maximum likelihood estimation (ME-MLE) and Deep-STORM reconstructions (see also Supplementary Movie 10). ME-MLE processing times were
estimated using an Intel Core i7-8700 CPU @ 3.2 GHz, 64GB RAM machine. Bottom: SQUIRREL52 analysis comparing reconstructions from
ThunderSTORM ME-MLE and Deep-STORM, highlighting better linearity of the reconstruction with respect to the equivalent wide-field dataset for Deep-
STORM. c Single frame of the raw of a DNA-PAINT50 dataset of a U2OS cell immuno-labelled for tubulin and the wide-field image. d Top: Comparison of
ThunderSTORM51 Multi-Emitter Maximum likelihood estimation (ME-MLE) and Deep-STORM reconstructions. ME-MLE processing times were estimated
using an Intel Core i7-8700 CPU @ 3.2 GHz, 32 GB RAM. Bottom: SQUIRREL52 analysis comparing reconstructions of ThunderSTORMME-MLE and Deep-
STORM, highlighting better linearity of the reconstruction with respect to the equivalent wide-field dataset for Deep-STORM. The reconstruction times
shown for Deep-STORM were obtained with the NVIDIA Tesla P100 PCIe 16 GB RAM available on Google Colab. RSP resolution -scaled Pearson
coefficient, RSE root-squared error.
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translate one type of image into another and training pix2pix
requires paired 2D images. Here, we illustrate a possible use of
pix2pix by training it to convert the fluorescence image of one
label (actin) into that of another label (nucleus) in migrating
DCIS.COM cells (Fig. 6c).

Image-to-image translation networks such as CycleGAN31 can
capture the characteristics of one image domain and understand
how these characteristics are related to another image domain, all
in the absence of any paired training examples (Fig. 6d).
Therefore, training CycleGAN only requires a representative set

Fig. 6 Image-to-image translation networks (fnet, pix2pix and CycleGAN). Example of data generated using the ZeroCostDL4Mic fnet, pix2pix and
CycleGAN notebooks. a Scheme illustrating the data required to train paired image-to-image translation networks (pix2pix and fnet). b Fnet was trained to
predict the location of mitochondria (Tom20 staining, Training Target) from bright-field images (Training Source). Both the fnet prediction and the ground-
truth images are displayed. The quality control metrics values computed directly in the fnet notebook are as follows: mSSIM (mean structural similarity
index): 0.79, PSNR (peak signal-to-noise ratio): 23.1 and NRMSE (normalised root-mean-squared error): 0.17. c pix2pix was trained to predict nuclear
stainings (SiR-DNA, Training Target) from actin stainings (lifeact-RFP, Training Source) in migrating DCIS.COM cells. A pix2pix prediction, the
corresponding ground-truth images are displayed. The quality control metrics values computed directly in the pix2pix notebook are as follows: mSSIM:
0.74, PSNR: 20.4 and NRMSE: 0.16. d Scheme illustrating the data requirement to train unpaired image-to-image translation networks (CycleGAN).
Importantly, these networks do not need to have access to a paired training dataset. e, f CycleGAN was trained to predict what images of microtubules
acquired with an SDC (spinning-disk confocal) would look like when processed with SRRF (super-resolution radial fluctuations) (e) (quality control metrics
values are as follows: mSSIM: 0.74, PSNR: 24.8 and NRMSE: 0.19) or imaged with a SIM (structured illumination microscopy) microscope (f). A CycleGAN
model was also trained to transform SRRF images into SIM images (g). For the SDC to SRRF translation, the CycleGAN prediction and ground-truth SRRF
images are displayed as well as the QC metrics values computed directly in the pix2pix notebook are displayed. For all panels, yellow squares highlight a
region of interest that is magnified.
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of images from one domain and a set from the other without the
need for any particular correspondence and, due to this, it
provides unique flexibility in training. As for pix2pix, CycleGAN
uses GANs to perform the image-to-image translation task and
requires 2D images to train. Here, we use CycleGAN to predict
what a fluorescent label would look like when imaged using other
imaging modalities. In particular, we trained CycleGAN to
predict what images of microtubules acquired with a spinning-
disk confocal would look like when processed with SRRF54,55 or
imaged with a SIM microscope (Fig. 6e, f). Using our notebook,
we also trained CycleGAN to transform SRRF images into SIM
images (Fig. 6g).

ZeroCostDL4Mic within larger analysis pipelines. Zer-
oCostDL4Mic notebooks are self-contained as they are sufficient
to train, evaluate and use DL networks. However, they can also be
connected with other image-analysis tools and predictions gen-
erated within the notebooks can be further analysed elsewhere.
For instance, the StarDist notebook can easily be connected to
TrackMate38 to enable automated cell tracking56 (Fig. 2). In fact,
most models trained with ZeroCostDL4Mic can also be down-
loaded and used outside of ZeroCostDL4Mic (e.g., StarDist5,6,
CARE7, Noise2Void8 in Fiji21 and U-Net2,28 and Deep-STORM29

in DeepImageJ23) and we expect cross-platform compatibilities to
improve in the future. This capability allows users to easily benefit
from the large pre-existing image-analysis ecosystem around
ImageJ/Fiji21,57. For segmentation tasks, this capability also allows
users to annotate more training images by using model predic-
tions as a starting point56.

ZeroCostDL4Mic notebooks can also be easily used sequen-
tially. For instance, we combined image-to-image translation
and nuclear segmentation tasks to track cells based on an actin
label automatically (Fig. 7 and Supplementary Movie 11).
Several groups have recently published tools that fulfil similar
cross-modality tasks58,59, highlighting a need for such tools in
the bioimaging community. Here, we demonstrate that
ZeroCostDL4Mic notebooks can be used in a modular fashion
to quickly and easily recapitulate sought-after solutions for the
community.

Quality control. One key feature of the ZeroCostDL4Mic
notebooks is that they allow for a detailed quality assessment of

the trained models before they are deployed on unseen data
(Supplementary Note 2). This is essential in optimising the
network performance for a particular application, determining
its limitations and preventing the significant introduction of
artefacts, a commonly raised concern for DL applications in
microscopy60,61. With this in mind, we implemented a quan-
titative QC step in all notebooks, which allows the assessment
and improvement of model performance (Supplementary
Figs. 5 and 6). These metrics allow the user to improve the
performance of a given model by tuning its hyperparameters or
exploring the range of applicability to different data from which
it was trained (generalisation). The QC section typically has two
parts. In the first part, the performance metrics shown to users
are loss curves for model training and validation (Fig. 8a).
These allow users to determine if the tested model overfits
during training, identifiable by an increasing divergence
between the validation and training loss. This divergence
appears if the model learns features too specific to the training
dataset instead of general features applicable to all similar
datasets, therefore preventing it from generalising to unseen
data, a common problem for DL networks62.

However, even a model that performs well on the validation
data can produce unwanted results when used on unseen data,
ultimately making the model unreliable. In the second part of
the notebooks’ QC section, these issues can be detected by
comparing the predictions from unseen data to the equivalent
ground-truth data. The metrics used in individual notebooks to
quantify the differences between predictions and ground truth
vary to reflect the differences in the type of data these models
operate on. For networks producing a grey-scale image, e.g.
CARE, Noise2Void, pix2pix, CycleGAN and label-free predic-
tion (fnet), the metrics used are SSIM (structural similarity)63

and RSE (root square error) (Fig. 8b). For networks producing a
binary or semantic segmentation, e.g., U-Net, the metric used is
IoU (intersection over union) (Fig. 8c). The StarDist notebook
also makes use of the IoU as well as other metrics, including the
F1 score and the Panoptic quality64. The YOLOv2 notebook
uses the mean average precision score (mAP)65,66 and F1 score,
reflecting the validity of the bounding box positions and the
corresponding classification (Fig. 8d). These metrics and our
implementations are described in detail in Supplementary
Information (Supplementary Note 2).

Fig. 7 Example illustrating how ZeroCostDL4Mic notebook can be used together. Figure highlighting how ZeroCostDL4Mic notebooks can be combined
to create a data analysis pipeline. Here, we wanted to automatically track the migration pattern of DCIS.COM cells labelled with lifeact-RFP. Therefore, we
first used pix2pix to predict the actin staining into nuclei staining (as in Fig. 6c) and StarDist to detect the nuclei. From the StarDist prediction, cells were
tracked automatically using TrackMate38 (as in Fig. 2d; see also Supplementary Movie 11). A representative field-of-view is displayed.
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Data augmentation and transfer learning. In ZeroCostDL4Mic,
we also enabled several important functionalities that facilitate
and improve the applicability of each DL approach. First, we
implemented the possibility to enable data augmentation
(Augmentor32, imgaug) which can artificially expand the image
diversity of a dataset. It commonly consists of applying a set of
image transformations to both source and target data in the
training dataset, such as rotation or vertical/horizontal flipping
but more complex transformations can also be used, such as
shearing. For instance, merely flipping (horizontal and vertical)
and rotating all the images in a dataset by 90° will increase the
size of a dataset by 8. Data augmentation may improve the
generalisation of a model by amplifying diversity in the dataset.
This may be especially useful if the available dataset is small,

which can occur if it is expensive or time-consuming to generate.
For instance, when training YOLOv2, with our test dataset, we
found that the model performance improved when performing
data augmentation on the training images and bounding boxes
(Fig. 9a–c).

In addition, we included the option to perform transfer
learning33 in all the ZeroCostDL4Mic notebooks. Transfer
learning allows us to take advantage of pretrained models, from
model “zoos” for instance, by re-using previously learned features
within these models and speeding up and improving the training
process (Supplementary Note 4). To illustrate the performance
improvement that can be achieved using transfer learning, we
compared the results obtained by training a StarDist model from
scratch to the results obtained when re-training a readily available

Fig. 8 Quality control of trained models. a Overfitting models: Graphs showing training loss and validation loss curves of a CARE network with different
hyperparameters. The upper panel shows a good fit of the model to unseen (validation) data (main training parameters, number_of_epochs: 100,
patch_size: 256, number_of_patches: 10, Use_Default_Advanced_Parameters: enabled), the lower panel shows an example of a model that overfits the
training dataset (main training parameters, number_of_epochs: 100, patch_size: 80, number_of_patches: 200, Use_Default_Advanced_Parameters:
enabled). b RSE (root-squared error) and SSIM (structural similarity index) maps: An example of quality control for CARE denoising model performance.
The quality control metrics values computed directly in the notebook are as follows: mSSIM (mean structural similarity index): 0.56 and NRMSE
(normalised root-mean-squared error): 0.18 for target vs source and mSSIM: 0.90 and NRMSE: 0.10 for target vs prediction. c IoU (intersection over union)
maps: An example of quality control metrics for a StarDist segmentation result, where IoU: 0.93 and F1: 0.97. d Precision–recall (p–r) curves: p–r curves for
the dataset shown in Supplementary Fig. 13, highlighting the effect of augmentation on the performance metrics of the YOLOv2 model, where AP (average
precision) for elongated improved from 0.53 to 0.84 upon 8× augmentation while F1 improves from 0.62 to 0.85.
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Fig. 9 Data augmentation and Transfer learning can improve performance. a–c Data augmentation can improve prediction performance. YOLOv2 cell
shape detection applied to bright-field time-lapse dataset. a Raw bright-field input image. b Ground-truth and YOLOv2 model predictions (after 30 epochs)
with increasing amounts of data augmentation. The original dataset contained 30 images which were first augmented by vertical and horizontal mirroring
and then by 90° rotations. c mAP (mean average precision) as a function of epoch number for different levels of data augmentation. d, e These panels
display an example of how transfer learning using a pretrained model can lead to very high-quality StarDist prediction even after only 5 epochs. This figure
also highlights that using a pretrained model, even when trained on a large dataset, can lead to inappropriate results. d Examples of StarDist segmentation
results obtained using models trained using 5, 20 or 200 epochs and using a blank model (“De novo” training) or the 2D-versatile-fluo as a starting point
(transfer learning). e StarDist QC metrics obtained with the models highlighted in (d) (n= 13 images). The IoU (intersection over union) scores are
calculated over the whole image, while the F1 scores are calculated on a per-object basis. Results are displayed as boxplots which represent the median and
the 25th and 75th percentiles (interquartile range); outliers are represented by dots96. Note that the axes of both graphs are cut. Source data for panel
(c) and (e) are provided in the Source Data file.
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model (model trained by others using related but different
images). When the provided pretrained model is used to perform
prediction on our data, it led to a reasonable nuclear segmenta-
tion but also to the generation of large artefacts rendering it
unusable (Fig. 9d, e). Typically, to obtain high-quality predictions
from models trained from scratch, we needed to train our
StarDist models for more than 200 epochs. However, when using
transfer learning, very high-quality predictions can be made using
a model trained for as little as five epochs (Fig. 9d, e).

Discussion
By bringing previously validated methods into a streamlined
format that allows easy, cost-free access and customised DL use
for microscopy data, we believe that ZeroCostDL4Mic provides
an important step towards broadening the use of DL approaches
beyond the community of computer scientists to the biology
laboratories that generate the imaging data. We hope to make DL
available to all researchers regardless of their laboratory’s scale
and means. We believe that this democratisation will contribute
to the acceptance and validation of DL methods in biomedical
research.

ZeroCostDL4Mic complements current community efforts to
simplify access to DL in microscopy. Other platforms, however,
suffer from either a lack of training capacity (StarDist ImageJ
plugin, DeepImageJ23, CellPose22, NucleAIzer17, Cellprofiler20 or
Ilastik19), a narrow focus on a single task (i.e., image segmenta-
tion with CDeep3M10, DeepCell Kiosk15 or DeepMIB16) or rely
on local servers or paid-for services (as the authors of U-Net have
implemented14, or with ImJoy18). Some methods can already be
trained on the widely used Fiji platform21 (DenoiSeg11, Noise2-
Void 2D8). However, for most users, the latter methods are only
feasible for use if their machines have GPU acceleration without
which training times can take 10’s to 100’s of hours. We believe
that ZeroCostDL4Mic fills these gaps and enables affordable and
versatile DL-deployment capabilities. It also differs from existing
solutions by providing a wide variety of DL tasks within a stan-
dardised and user-friendly platform to carry out end-to-end DL
workflows: (1) installing relevant computational components, (2)
loading training datasets, (3) training models with tailored data,
(4) quantitatively validating the performance of models and (5)
deploying validated models on new data. ZeroCostDL4Mic also
enables researchers to improve their understanding of DL and
experiment with hyperparameter optimisation while making
informed decisions when choosing appropriate networks for
specific applications. These steps help to both leverage the ben-
efits and understand the limitations of DL approaches in research.

Currently, ZeroCostDL4Mic relies on the computing power
provided for free by Google Colab. We have characterised in
detail the limitations of using Colab for DL and found that
RAM availability often limits the number of images that can be
used for training DL networks (see Supplementary Table 5).
Besides, the runtime duration can, in principle, limit the
number of epochs used for training. Importantly, we also
showed that each network presented here could be trained
efficiently within these boundaries and that transfer learning, as
implemented here, can alleviate training time limits. Therefore,
we believe that ZeroCostDL4Mic is ideal for carrying out small-
scale studies with microscopy data (a few 10’s of GB of data).
Larger-scale analysis pipelines may require the investment
in paid-for cloud-based platforms (i.e., Paperspace, AWS or
FloydHub) or local infrastructure.

Although we have focused our development on Google Colab,
the ZeroCostDL4Mic notebooks are not strictly dependent on
them since they can be ported to any platform that supports
Jupyter notebooks. For instance, we demonstrate that the

ZeroCostDL4Mic Deep-STORM and StarDist 2D notebooks can
be adapted to run on Deepnote or FloydHub respectively (see
Supplementary Note 6 and Supplementary Fig. 4). Paid-for cloud-
based solutions often provide more resources than Google Colab,
which will allow to train models using more data and larger batch
and patch sizes. This can lead to the creation of higher perfor-
mance and/or more general models. Access to these platforms
will only require a small financial investment to train DL models.
For instance, FloydHub access costs $9 per month plus $1.2 per
GPU hour (as of December 2020). However, as it can take
multiple training sessions to find a suitable set of parameters for
an individual model and dataset, we recommend first-time users
familiarise themselves with training models and explore network
suitability using Google Colab initially before moving to paid-for
platforms.

One remaining challenge lies in handling, curating, and
annotating datasets, especially when performing segmentation
tasks: the appropriate preparation of training datasets is always
associated with human hours cost, disregarding the platform used
for training DL networks. However, we would like to highlight
that creating segmentation training datasets can be significantly
accelerated by initially training models first with a small number
of images67,68. These models can then generate masks that can be
refined by users (i.e., in Fiji21) before being used for training to
obtain a high-performance model5,7,8,11,23,69. This bootstrapping
approach can be carried out iteratively, thereby increasing the
network performance progressively while increasing the amount
of training data available56.

Another challenge associated with DL is enabling model ver-
sioning to ensure reproducibility. Indeed, a DL model’s perfor-
mance is affected by the training dataset, the network and
training parameters but also all the underlying dependencies. To
mitigate this issue, in ZeroCostDL4Mic, we provide each trained
model with a thorough report that contains all parameters used
for training (the type of the data, network parameters, essential
package versions) and the model performance (assessed via the
quality control section). This logging allows users to easily keep
track of parameter changes and training data modifications
during model optimisation. Importantly, to contribute to setting
good practices on reporting DL model training in the literature,
this report is human-readable and can be included as-is in a
typical “Methods” section.

Altogether, ZeroCostDL4Mic has the potential to accelerate
the uptake of DL for new users and promote their capacity to
use powerful image-analysis strategies, thereby readily benefit-
ting from computer science innovations. Together with the help
of the broader research community, we expect to grow the
number of networks available in ZeroCostDL4Mic quickly. We
also expect ZeroCostDL4Mic to become a standard framework
that developers can use to showcase and evolve their networks,
adapting them to data analysis tasks optimised for their specific
image-processing problems. Indeed, since the initial release of
ZeroCostDL4Mic, several groups have adapted their novel tools
with a similar structure and interface to our notebooks and by
exploiting Google Colab70,71. Similarly, we will continuously
develop, maintain and adapt ZeroCostDL4Mic to be up-to-date
with the latest DL paradigms. This focus will incorporate the
capacity to maintain compatibility with the rapidly evolving DL
libraries available today and the ability to export models that
could be used in either DeepImageJ23, CSBDeep7 or other pre-
diction engines.

Methods
Cell culture. U-251 glioma cells were grown in DMEM/F-12 (Dulbecco’s
Modified Eagle’s Medium/Nutrient Mixture F-12; Life Technologies, 10565-018)
supplemented with 10 % foetal bovine serum (FCS) (Biowest, S1860). U-251
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glioma cells expressing endogenously tagged paxillin-GFP were generated using
CRISPR/Cas972.

MCF10 DCIS.COM (DCIS.COM) lifeact-RFP cells were cultured in a 1:1 mix of
DMEM (Sigma-Aldrich) and F-12 (Sigma-Aldrich) supplemented with 5% horse
serum (16050-122; GIBCO BRL), 20 ng/ml human EGF (E9644; Sigma-Aldrich),
0.5 mg/ml hydrocortisone (H0888- 1 G; Sigma-Aldrich), 100 ng/ml cholera toxin
(C8052-1MG; Sigma-Aldrich), 10 μg/ml insulin (I9278-5ML; Sigma- Aldrich), and
1% (vol/vol) penicillin/streptomycin (P0781- 100ML; Sigma-Aldrich). DCIS.COM
lifeact-RFP cells were generated using lentiviruses, produced using pCDH-LifeAct
mRFP, psPAX2, and pMD2.G constructs73.

HeLa ATCC cells were seeded on fibronectin-coated eight-well chamber slides
(Sarstedt, Germany, 1.5 × 104 cells/well). Cells were grown for 16 h at 37 °C and 5%
CO2 in Dulbecco’s modified Eagle’s medium containing 4.5 g/l glucose, 10% FCS
and 1% L-alanyl-L-glutamine (Thermo Fisher, GlutaMAX). To fix the HeLa cells,
we employed a protocol shown to preserve the cytoskeleton and organelles
(adapted from ref. 74). The culture medium was directly replaced with PHEM
buffer containing 3% methanol-free formaldehyde (Thermo Fisher, USA) and 0.2%
EM-grade glutaraldehyde (Electron Microscopy Sciences, USA) and incubated the
samples for 1 h at room temperature. Cells were washed thrice with PBS, quenched
with 0.2% sodium borohydride in PBS for 7 min and washed again thrice with PBS.

A2780 cells were cultured in RPMI 1640 supplemented with 10% FCS. The cells
were grown at 37 °C in a 5% CO2 incubator.

MDA-MB-231 (triple-negative human breast adenocarcinoma) cancer cells
were grown in DMEM (Sigma-Aldrich) supplemented with 10% FCS at 37 °C and
5% CO2.

Rat hippocampal neurons from embryonic day 18 pups75 were cultured on 18-
mm coverslips at a density of 6000 cells/cm2 following established guidelines of the
French Animal Care and Use Committee (French Law 2013-118 of February 1,
2013) and approval of the local ethics committee (agreement 2019041114431531-
V2 #20242). In these neuronal cultures, a small number of glial cells, such as the
one shown in Fig. 2, Supplementary Fig. 5 and Supplementary Movie 10 are
present and were labelled and imaged.

U2OS cells were purchased from DSMZ (Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures, Braunschweig DE, ACC 785).
MDA-MB-231 cells were provided by ATCC. DCIS.COM cells were provided by J.
F. Marshall (Barts Cancer Institute, Queen Mary University of London, London,
England, UK). HeLa cells were provided by ECACC. U-251 glioma cells were
provided by J. Ivaska (University of Turku, Turku, Finland). A2780 cells were a
kind gift of P. Caswell (University of Manchester, Manchester, UK).

Python programming. We developed our platform on Jupyter Notebooks as a
Python interactive environment. The notebooks were developed with Google
Colab, which includes several pre-installed packages. Important packages used in
ZeroCostDL4Mic include Numpy76, Keras (https://github.com/keras-team/keras),
TensorFlow77, Augmentor32, tifffile (https://github.com/cgohlke/tifffile),
elasticdeform28 and imgaug.

U-Net training dataset. The training datasets used for segmentation in the U-net
ZeroCostDL4Mic notebooks are publicly available EM datasets. For 2D segmen-
tation, this was a neuronal membrane segmentation dataset from the ISBI chal-
lenge 201278,79 and for 3D segmentation from the mitochondrial segmentation
dataset available from EPFL (https://www.epfl.ch/labs/cvlab/data/data-em/).
Datasets for segmentation tasks can also be created manually. This requires target
images that have been segmented by an expert using drawing tools, e.g. in ImageJ/
Fiji21,57, to draw outlines around the structures of interest. For training in the
notebook, the source (raw EM image) and target (8-bit mask obtained from expert
drawing) images were placed in separate folders, with each source image having a
corresponding target image with the same name.

StarDist training dataset. DCIS.COM lifeact-RFP cells were labelled using 0.5 μM
SiR-DNA (SiR-Hoechst, Tetu-bio, Cat number: SC007) for 2 h. The cells were then
imaged live for 14 h on a spinning-disk confocal microscope (one picture every 10
min). The spinning-disk confocal microscope used was a Marianas spinning-disk
imaging system with a Yokogawa CSU-W1 scanning unit on an inverted Zeiss Axio
Observer Z1 microscope (Intelligent Imaging Innovations, Inc.) equipped with a
×20 (NA 0.8) air, Plan-Apochromat objective (Zeiss).

To generate the StarDist training dataset, mask images were generated manually
in Fiji. Briefly, the outlines of each nucleus were drawn using the freehands
selection tool and added to the ROI manager. Once all outlines were stored in the
ROI manager, the LOCI plugin (https://imagej.net/LOCI) was used to create an
ROI map. These ROI map images were then used as the mask images to train
StarDist.

To automatically track cells, we sequentially used StarDist and the Fiji plugin
TrackMate56. Briefly, using our StarDist notebook, nuclei from live-cell imaging
data were detected, and tracking files containing the coordinate of their centre
(marked by a dot) were generated (StarDist notebook section 6). These tracking
files were then used as input for TrackMate38. We also provide in the
ZeroCostDL4Mic GitHub page a Fiji macro to batch analyse a folder containing

multiple tracking files. Cell tracks were then analysed using the online tool Motility
lab (http://www.motilitylab.net/)80.

Noise2Void training datasets. The 2D dataset provided with our notebooks was
generated by plating U-251 glioma cells expressing endogenously tagged paxillin-
GFP on fibronectin-coated polyacrylamide gels (stiffness 9.6 kPa)72. Cells were
then recorded live using a spinning-disk confocal microscope equipped with a long
working distance of ×63 (NA 1.15 water, LD C-Apochromat) objective (Zeiss). The
3D dataset provided with our notebooks was generated by recording A2780 ovarian
carcinoma cell, transiently expressing lifeact-RFP (to visualise the actin cytoske-
leton), migration on fibroblast-generated cell-derived matrices81. The cell-derived
matrices were labelled using Alexa Fluor 488-recombinant fibronectin and the
images acquired using a spinning-disk confocal microscope equipped with a 63x oil
(NA 1.4 oil, Plan-Apochromat, M27 with DIC III Prism) objective (Zeiss). For both
datasets, the spinning-disk confocal microscope used was a Marianas spinning-disk
imaging system with a Yokogawa CSU-W1 scanning unit on an inverted Zeiss Axio
Observer Z1 microscope controlled by SlideBook 6 (Intelligent Imaging Innova-
tions, Inc.). Images were acquired using a Photometrics Evolve, a back-illuminated
EMCCD camera (512 × 512 pixels).

CARE training datasets. Briefly, DCIS.COM lifeact-RFP cells were plated on high-
tolerance glass-bottom dishes (MatTek Corporation, coverslip 1.5) and were
allowed to reach confluence. Cells were then fixed and permeabilized simulta-
neously using a solution of 4% (wt/vol) paraformaldehyde and 0.25% (vol/vol)
Triton X-100 for 10 min. Cells were then washed with PBS, quenched using a
solution of 1M glycine for 30 min, and incubated with phalloidin-488 (1/200 in
PBS; Cat number: A12379; Thermo Fisher Scientific) at 4 °C until imaging
(overnight). Just before imaging using SIM, samples were washed three times in
PBS and mounted in Vectashield (Vectorlabs). The SIM system used was Delta-
Vision OMX v4 (GE Healthcare Life Sciences) fitted with a ×60 Plan-Apochromat
objective lens, 1.42 NA (immersion oil RI of 1.516) used in SIM illumination mode
(five phases and three rotations). Emitted light was collected on a front-illuminated
pco.edge sCMOS (pixel size 6.5 μm, read-out speed 95MHz; PCO AG) controlled
by SoftWorx. In the provided dataset, the high signal-to-noise ratio images were
acquired from the phalloidin-488 staining using acquisition parameters optimal to
obtain high-quality SIM images (in this case, 50 ms of exposure time, 10% laser
power). In contrast, the low signal-to-noise ratio images were acquired from the
LifeAct-RFP channel using acquisition parameters more suitable for live-cell
imaging (in this case, 100 ms of exposure time, 1% laser power). The dataset
provided with the 2D CARE notebooks are maximum intensity projections of the
collected data.

Label-free prediction (fnet) training dataset. The dataset provided for training
label-free prediction notebook was designed to predict a mitochondrial marker
from bright-field images. Before the acquisition, fixed HeLa ATCC cells were
permeabilised and blocked using 0.25% Triton X-100 (Sigma-Aldrich, Germany)
and 3% IgG-free bovine serum albumin (BSA, Carl Roth, Germany) in PBS for
1.5 h. Cells were labelled for TOM20 using 5 μg/ml rabbit anti-TOM20 primary
antibody (sc-11415, Santa Cruz, USA) and 10 μg/ml donkey-anti-rabbit-secondary
antibody (Alexa Fluor 594 conjugated, A32754, Thermo Fisher, USA) in PBS
containing 0.1% Triton X-100 and 1% BSA for 1.5 h each. Samples were rinsed
twice and washed thrice with PBS (5 min) after each incubation step. Image stacks
were acquired on a Leica SP8 confocal microscope (Leica Microsystems, Germany)
bearing a ×63, 1.40 NA oil objective (Leica HC PL APO). The pixel size was set to
90 nm in XY-dimensions, and 150 nm in Z (32 slices) and fluorescence image
stacks were recorded using 561-nm laser excitation and collected by a (photo-
multiplier tube) PMT. The corresponding transmitted light image stack was
recorded in parallel using a transmitted light PMT. We acquired 25 3D stacks with
dimensions of 1024 × 1024 × 32. To create the training set each image stack was
split into four stacks with dimensions of 512 × 512 × 32, giving a dataset of 100
images of which 92 were used for training and 8 unseen for testing and quality
control (see Table). The raw data were converted into.tif file format and split into
stacks of the respective channels (fluorescence and transmitted light). To prepare a
training set, stacks were split into individual folders by channel. To create matched
training pairs, the signal files (transmitted light) and their respective targets
(fluorescence) must be in the same order in the irrespective folders. It is therefore
advisable to number source-target pairs or to give the files the same names.

Deep-STORM training and example dataset. For Deep-STORM, training data
and test data can be generated via SMLM data simulations that mimic the
experimental data type that needs to be subsequently analysed. This is directly
possible within the notebook that we provide. The example experimental data that
we provide was obtained from a glial cell in a culture of rat hippocampal neurons,
fixed and stained with phalloidin-Alexa Fluor 64782, then imaged on a Nikon N-
STORM microscope using ×100, NA 1.49 TIRF objective (256 × 256 pixels with
160-nm pixel size, acquiring 59,900 frames at 15 ms/frame) controlled by NIS-
Elements (version 4.4). In order to simulate a higher density of emitters, we binned
the data in groups of four frames using Fiji (Grouped z-project/Sum slices plugin)
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leading to 14,975 frames (BIN4), or groups of ten frames leading to 5990 frames
(BIN10). The binning was performed on a 32-bits dynamic range.

In order to train the model for the reconstruction of the BIN4 and the BIN10
dataset, 20 frames of a 64 × 64 pixels field-of-view were simulated with parameters
matching the experimental datasets closely. The parameter lists are shown in
Table 1.

The localisation files obtained from our Deep-STORM notebook were
subsequently imported in ThunderSTORM51 for drift correction using cross-
correlation analysis83.

For DNA-PAINT imaging of the tubulin cytoskeleton, U2OS cells were fixed
and immuno-labelled with mouse-anti-β-tubulin primary antibody (32-2600,
Thermo Fisher) and DNA-conjugated (P1-docking strand) secondary antibody.
DNA-PAINT imaging was performed using a Nikon N-STORM system bearing
a Nikon Apo TIRF ×100 oil immersion objective (1.49 NA). In all, 2 nM P1-
ATTO655 (8 nt duplex, Eurofins) in PBS pH 8.2+ 500 mM NaCl was added to
the sample, resulting in a labelling density significantly higher than used for
conventional DNA-PAINT imaging. Fluorophores were excited in highly
inclined and laminated optical sheet mode using ~1 kW/cm² 647-nm laser
illumination. In total, 2000 frames were recorded at 10-Hz frame rate and an EM
gain of 200.

Parameters for simulating the training data (TUB) were estimated from the raw
movie or ThunderSTORM ME-MLE reconstruction of a few frames and are listed
in Table 1. The training was performed for 30 epochs and 1750 steps per epoch
using a batch size of 4. Both localisations obtained from Deep-STORM and
ThunderSTORM analysis were corrected for drift using the cross-correlation
function in ThunderSTORM. Emission events that are split onto subsequent
frames were merged, applying a 40 nm distance threshold (no dark frame allowed).

YOLOv2 training dataset. The YOLOv2 dataset is composed of live-cell movies of
breast cancer cells (MDA-MB-231) migrating on cell-derived matrices81 generated
by human fibroblasts84. MDA-MB-231 cells were seeded at a density of 5000 cells
per ml on cell-derived matrices and allowed to spread for four hours. Cells were
then filmed using an inverted wide-field microscope (AxioCam MRm camera, EL
Plan-Neofluar 20/0.5 NA objective (Carl Zeiss)) equipped with a heated chamber
(37 °C) and CO2 controller (5%). Images were collected every 10 min.

To create the annotations, 30 individual images of size 1380 × 1040 were saved
as.png files and loaded into https://www.makesense.ai/, an online annotation
platform (for documentation, see: https://github.com/SkalskiP/make-sense/). A
new project was started with the “Object Detection” option. Next, a list of labels
was created using the “+” option and typing the names of the classes to be
identified. The option “Going on my own” was selected after the creation of the
labels and without selecting the “COCO SSD…” or “POSE-NET…” boxes. In the
next step, bounding boxes were drawn using the cursor and object classes were
added by clicking on the “Select Label” option on the right side of the window and
selecting from the previously assembled labels list, now available as a dropdown
list. After all images in the dataset have annotated, the annotations were
downloaded by selecting “Export Labels” and checking the box “A.zip package
containing the files in VOC.XML format”. The annotation files were then
downloaded in a zip folder with the original images’ filenames and the.xml file
suffix. These files were used as targets for the training of YOLO network in our
notebook. We used the imgaug library to augment the dataset and the bounding
boxes by rotation and flipping.

CycleGAN training dataset. U2OS cells were plated on fibronectin-coated glass-
bottom dishes (MatTek Corporation) for 2 h before methanol fixation at −20 °C
for 5 min. Fixed samples were washed three times using PBS and stained with an
anti-tubulin antibody (clone 12G10, Developmental Studies Hybridoma Bank) for
35 min at room temperature. Samples were then washed thrice with PBS and

incubated with an anti-mouse secondary antibody conjugated to Alexa488
(Thermo Fisher Scientific. Cat number: R37114). Stained samples were washed
thrice with PBS and kept at 4 °C, in PBS, until imaging.

The SDC dataset was acquired using a Marianas spinning disk equipped with a
Yokogawa CSU-W1 scanning unit on an inverted Zeiss Axio Observer Z1
microscope and a ×100 (NA 1.4 oil, Plan-Apochromat, M27) objective and
controlled by SlideBook 6 (Intelligent Imaging Innovations, Inc.). Images were
acquired using a Photometrics Evolve, a back-illuminated EMCCD camera (512 ×
512 pixels). For each field of view, 200 images were acquired. The SDC images used
to train CycleGAN were generated by performing average projections of the
collected images. To maintain a uniform pixel size across the SDC, SIM, and
Fluctuation-based super-resolution (FBSR) images, the SDC images were magnified
by four using a bilinear interpolation.

The fluctuation-based super-resolution dataset was acquired by processing
the SDC images using the latest implementation of NanoJ-SRRF55 within the
ImageJ software21,57. This new version of SRRF (super-resolution radial
fluctuations) is available upon request and will be openly available for download
soon. The SRRF settings were chosen so that the least amount of errors were
present in the reconstructed images (estimated using SQUIRREL52) and were as
followed: “vibration correction”, on; radius, 2; sensitivity, 2; magnification, 4;
temporal analysis, average; intensity weighting, on; macro-pixel patterning
correction, on.

The SIM dataset was acquired using a DeltaVision OMX v4 (GE Healthcare Life
Sciences) fitted with a ×60 Plan-Apochromat objective lens, 1.42 NA (immersion
oil RI of 1.512) used in SIM illumination mode (five phases and three rotations).
Emitted light was collected on a front-illuminated pco.edge sCMOS (pixel size 6.5
μm, read-out speed 95MHz; PCO AG) controlled by SoftWorx. Each dataset was
augmented by five by randomly cropping (original size 2048 × 2048 px, crop size
1280 × 1280), flipping and rotating the original images. This augmentation pipeline
was generated using Augmentor32, for which we also provide a ZeroCostDL4Mic
notebook.

pix2pix training dataset. DCIS.COM lifeact-RFP cells were incubated for 2 h with
0.5 μM SiR-DNA (SiR-Hoechst, Tetu-bio, Cat Number: SC007) before being
imaged live for 14 h (1 picture every 10 min) using a spinning-disk confocal
microscope. The spinning-disk confocal microscope used was a Marianas
spinning-disk imaging system with a Yokogawa CSU-W1 scanning unit on an
inverted Zeiss Axio Observer Z1 microscope (Intelligent Imaging Innovations, Inc.)
equipped with a ×20 (NA 0.8) air, Plan-Apochromat objective (Zeiss).

Statistics and reproducibility. Unless otherwise specified, all experiments were
performed once. Here, we are assessing the performance of computer algorithms
and not the variability of biological systems.

Ethics declarations. We confirm that we complied with all the relevant ethical
regulations for animal testing and research.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All our example datasets are available for download in Zenodo (Links also available on
our GitHub page): CARE 3D85, CARE 2D86, Noise2Void 3D87, Noise2Void 2D88, Deep-
STORM89, CycleGAN90, pix2pix91, YOLOv292, StarDist 2D93, label-free prediction
fnet94. The datasets used to train 2D U-net were originally published as part of the ISBI
2012 segmentation challenge32,79 and were retrieved for this work from https://github.
com/zhixuhao/unet. The dataset used for 3D segmentation in U-Net 3D is publicly
available from the page of the École polytechnique fédérale de Lausanne (EPFL): https://
www.epfl.ch/labs/cvlab/data/data-em/. Source data are provided with this paper.

Code availability
ZeroCostDL4Mic is available as Supplemental Software or can be accessed from our
GitHub page95 https://github.com/HenriquesLab/ZeroCostDL4Mic. This resource is fully
open-source, providing users with tutorials, Jupyter Notebooks for Google Colab, and
many real-life example datasets for training and testing.
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