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Abstract
In life sciences, tracking objects from movies enables researchers to quantify the
behavior of single particles, organelles, bacteria, cells, and even whole animals. While
numerous tools now allow automated tracking from video, a significant challenge
persists in compiling, analyzing, and exploring the large datasets generated by these
approaches. Here, we introduce CellTracksColab, a platform tailored to simplify the
exploration and analysis of tracking data. CellTracksColab facilitates the compiling and
analysis of results across multiple fields of view, conditions, and repeats, ensuring a
holistic dataset overview. CellTracksColab also harnesses the power of
high-dimensional data reduction and clustering, enabling researchers to identify distinct
behavioral patterns and trends without bias. Finally, CellTracksColab also includes
specialized analysis modules enabling spatial analyses (clustering, proximity to specific
regions of interest). We demonstrate CellTracksColab capabilities with three use cases,
including T-cells and cancer cell migration, as well as filopodia dynamics.
CellTracksColab is available for the broader scientific community at
https://github.com/CellMigrationLab/CellTracksColab.
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Introduction
In life science, tracking has emerged as an indispensable tool for unparalleled insights
into dynamic molecular and cellular behaviors. Parallel to this, segmentation methods
relying on machine learning and deep learning are now greatly facilitating the
implementation of complex tracking pipelines1–4; enabling the quantitative analysis of
these dynamic behaviors. Yet, as the capabilities of tracking tools have expanded, so
too have the challenges associated with analyzing the resulting data.

Multiple tools have been developed to help researchers compile tracking data; for
instance, these include the Ibidi Chemotaxis tool (a Fiji plugin), the MotilityLab website
(an online platform for CelltrackR5), or TrackMateR6. These traditional analytical
approaches, implemented by us and many others, typically reduce tracking datasets to
population-level analyses where track metrics are averaged across different conditions.
Yet, while practical, such analyses overlook the heterogeneity within biological data.
Over the past two years, multiple tools, including CellPhe (an R toolbox7), Traject3D (a
collection of MATLAB scripts8), and CellPlato (a Python toolbox9), have been designed
to harness the high-dimensionality of tracking datasets to assist in the unbiased
discovery of rare phenotypes. Still, these tools often remain difficult to implement for
users with no or little coding expertise.

Here, we present CellTracksColab, a Python-based platform to streamline the analysis
of tracking datasets. This platform is specifically designed for researchers, particularly
those with limited programming expertise, facilitating the exploration and analysis of
tracking data. CellTracksColab leverages the power of Jupyter notebooks, which blend
live code execution with comprehensive documentation access. CellTracksColab can
run locally and in the cloud, accommodating diverse user preferences and resource
availability. Drawing on successful models like ColabFold10 and ZeroCostDL4Mic11,
CellTracksColab is fully integrated within the Google Colaboratory framework (Colab).
Through a simplified workflow, researchers can install essential software dependencies
with a few mouse clicks, upload their tracking data, and run their analyses.
CellTracksColab extends beyond visualization and population analyses, empowering
researchers to delve into the nuanced dynamics and behaviors encapsulated within
their tracking experiments. We first describe CellTracksColab's architecture. Then, we
demonstrate CellTracksColab features and capabilities in studying T-cells and cancer
cell migration, and filopodia dynamics.
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Results

The CellTracksColab framework.
The CellTracksColab platform comprises a collection of Jupyter notebooks designed to
streamline tracking data analysis (Fig. 1A). CellTracksColab can be run locally or in
cloud services such as Google Colab, which provides users free access to computing
resources that simplify the user experience by eliminating the need for local
installations.

CellTracksColab is designed to process tracking data from various open-source tracking
software, including TrackMate1, CellProfiler12, Icy13, ilastik14, and the Fiji Manual
Tracker15. CellTracksColab supports tracking data stored in XML (TrackMate) and CSV
formats (TrackMate, CellProfiler, Icy, ilastik, and Fiji Manual Tracker). CellTracksColab
can also be made compatible with other tracking tools that export results that follow our
minimal requirements (see documentation for details). To facilitate a structured analysis,
users are advised to organize their files into directories representing different
experimental conditions and biological repeats. This organizational strategy is crucial for
accurately categorizing and analyzing the dataset, considering various aspects such as
experimental conditions, biological replicates, and fields of view. By promoting
structured data management, CellTracksColab streamlines the analytical process and
enhances the exploration and understanding of data variability and heterogeneity
across the dataset.

The performance of CellTracksColab is limited by the resources available to the user,
particularly the amount of RAM available, which can limit the volume of data that can be
processed. However, optimization of the underlying code has been executed to ensure
maximal efficiency in resource utilization. For instance, we analyzed more than 50,000
tracks (> 3 million objects from 117 videos) using CellTracksColab and the free version
of Google Colab (all results presented in the manuscript can be replicated with the free
version of Google Colab). CellTracksColab could accommodate one of our larger
datasets encompassing over 536,000 tracks (> 56 million objects from 300 videos), but
this required the additional RAM that Google Colab Plus provides.
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Figure 1: The CellTracksColab platform

(A) Schematic representation of the CellTracksColab workflow.
(B) Visualization of tracks in a CellTracksColab notebook.
(C) Statistical analysis of track metrics using CellTracksColab. This figure shows the analysis of breast cancer cell
migration (expressing CTRL shRNA or MYO10-targeting shRNA) in different environments beneath a collagen gel
and standard media. The directionality metric is presented in a Tukey boxplot format. Vertical whiskers extend to data
points within 1.5× the interquartile range. Each biological replicate is uniquely color-coded for clarity. Accompanying
the plot are mirrored heatmaps that illustrate the effect size (Cohen's d value) and statistical significance (p-values
from randomization tests) across various conditions.
(D) Dimensionality reduction and clustering visualization in CellTracksColab. This panel displays a 2D t-SNE
projection of the entire dataset, utilizing comprehensive track metrics for the analysis. Data points are color-coded to
reflect cluster groups identified through HDBSCAN analysis on the t-SNE projection, providing insights into track
characteristics and similarities.
(E) Spatial clustering analysis using Ripley's L function and Monte Carlo simulations in CellTracksColab. This graph
illustrates the spatial distribution of tracks, where a blue curve above the zero line indicates clustering at a specific
radius in the field of view. The Monte Carlo simulation results are included to assess the statistical significance of the
observed patterns.
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(F) Measurement and analysis of object-to-region proximity using CellTracksColab. This example demonstrates the
platform's utility in quantifying the distance of objects (marked as yellow dots) relative to a defined region of interest
(denoted by the white edge). The tool allows tracking these distances over time and computing related metrics,
facilitating in-depth spatial analysis.

Analyzing data using CellTracksColab
When the tracking data is loaded into CellTracksColab, it is automatically exported into
the CellTracksColab format. This standardized format ensures consistent data access
and manipulation, facilitating thorough analysis of the tracking data across the platform.
Once exported, users can, for example, visualize (Fig. 1B), filter, and smooth tracks
(Fig. S1). Track smoothing using moving averages can prove to be particularly
beneficial before the computation of directionality metrics, especially when the tracked
object exhibits jitteriness (e.g., nuclei) and the user's interest lies in discerning the
overall movement of the cell.

Upon loading data, CellTracksColab can compute various track metrics or import them
directly from prior analyses conducted in the tracking software (Fig. 1A). This is ensured
by the flexible design of the CellTracksColab format, which provides the aggregation of
additional metrics without affecting the content of the original dataset. Users can then
generate box-plots illustrating the distribution of different track metrics of interest (Fig.
1C). Additionally, several relevant statistical metrics are calculated, such as Cohen's d
value –which quantifies the standardized effect size between groups and is less
sensitive to sample size variations– and the p-values of statistical hypothesis tests
–which compare the distribution of track metrics across conditions. The statistical tests
available include a randomization test that assesses the distribution of Cohen’s d values
obtained with bootstrapping and t-tests that compare the mean value distributions
obtained from bootstrapping, following the SuperPlots methodology16. Both tests are
available with and without Bonferroni Correction, which adjusts the p-value to account
for multiple comparisons (Fig. 1C). CellTracksColab also enables users to perform
quality control on their dataset, such as checking that their data is balanced between
repeats and conditions. Namely, the user can resample unbalanced data before plotting
the track metrics of interest. In addition, CellTracksColab can compute similarities
across different experimental conditions and replicates using various track metrics to
ensure data reliability and meaningful analysis. The results are visualized using
hierarchical clustering in the form of dendrograms, which aids in comparing similarities
within and across different conditions and identifying outliers.

Inspired by CellPlato9, CellTracksColab integrates Uniform Manifold Approximation and
Projection (UMAP) or t-distributed Stochastic Neighbor Embedding (t-SNE) combined
with Hierarchical Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN) to explore the inherent heterogeneity within tracking datasets unbiasedly
(Fig. 1D). This combination allows for dimensionality reduction and effective clustering
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of tracks. The platform provides capabilities to plot track metrics for each cluster,
creates heatmaps for an overview of data variability, and identifies exemplar tracks,
representatives of each cluster, for detailed analysis. CellTracksColab also includes
specialized spatial analysis modules that enable the spatial analysis of track data.
These modules enable, for instance, the assessment of track clustering (Fig. 1E) or
calculating the proximity of tracks to specific regions of interest (Fig. 1F). These tools
facilitate the discovery of distinct subpopulations or behaviors within the data, and also
serve dual purposes: identifying actual clusters and categorizing data for comparative
fingerprinting.

Importantly, PDF files of all plots and CSV files encapsulating all plot data are exported,
enabling users to visualize and revisit the results using their preferred software
platforms. Due to the platform's flexible design, we anticipate the addition of new
analysis modules, both by our team and the user community.

Exploring T-cell migration using CellTracksColab
To showcase the capabilities of CellTracksColab, we first chose to reanalyze a small
dataset of T-cells migrating on either Vascular cell adhesion protein 1 (VCAM) or
Intercellular Adhesion Molecule 1 (ICAM), captured through brightfield microscopy (Fig.
2A)1,17,18. Automated cell tracking was achieved using StarDist and TrackMate
algorithms1. The dataset encompasses ten videos spread across two conditions and
three biological repeats. CellTracksColab compiled this dataset using Colab in a few
seconds, incorporating 2,297 tracks and 38,852 tracked objects.

After the computation of additional metrics, we first evaluated the dataset's balance and
variability across different fields of view. Although the dataset exhibited some condition
imbalance, we opted against resampling due to its relatively small size (Fig. S2A).
Intriguingly, the FOV-based clustering analysis unveiled an unexpected alignment
between two FOVs from the ICAM condition with those from the VCAM condition,
hinting at potential similarities in cell tracking patterns (Fig. S2B). The condition and
repeat-based clustering analysis further corroborated this observation. Specifically, the
analysis revealed that the ICAM second biological repeat displayed a clustering pattern
remarkably similar to those observed in VCAM repeats (Fig. S2C). This analysis
indicates that this particular ICAM biological repeat does not behave as the other two,
providing valuable information.

We further utilized CellTracksColab to plot key track metrics, including mean speed and
directionality of T-cell migration. Our analysis confirmed that T-cells exhibit slower and
less directional movement on VCAM than on ICAM surfaces (Fig. 2B). To delve deeper,
we employed UMAP for dimensionality reduction, followed by HDBSCAN clustering.
This approach revealed the presence of at least five distinct behavioral clusters within
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the cell population, suggesting varied migration patterns among T-cells (Fig. 2C-D). A
fingerprinting plot then provided insights into the distribution of ICAM and VCAM tracks
across these clusters, highlighting differing proportions (Fig. 2E). A notable observation
was the much higher percentage of ICAM tracks in cluster 3 compared to VCAM and a
higher percentage of VCAM tracks in cluster 1 compared to ICAM. CellTracksColab
generates a heatmap representing the Z-score of available track metrics for each
cluster to facilitate rapid metric comparison across clusters (Fig. 2F). Cluster 3
comprises fast and more directional tracks. In contrast, cluster 1 primarily comprises
very slow-migrating cells (Fig. 2G). Finally, we compared track metrics between the
ICAM and VCAM conditions within specific clusters. Focusing solely on tracks in cluster
4 (a cluster composed of migrating cells), we observed that amongst motile cells, cells
plated on ICAM migrated faster and tended to be more circular than those on VCAM
(Fig. 2H). While we provide only brief examples here, we can delve deeper into the
analysis, identify tracks belonging to each cluster, and match them back to the original
video. Further analyses will depend on the user’s interest in the biological phenomenon
studied. This multifaceted analysis underscores CellTracksColab's utility in offering
nuanced insights into cell migration dynamics under different conditions.
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Figure 2: Exploring T-cell migration using CellTracksColab
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(A) T-cells plated on ICAM were recorded using a brightfield microscope and automatically tracked using StarDist and
TrackMate. Detected cells (in magenta) and their tracks (colors indicate track ID) are displayed. Scale bar: 100 µm.
(B) The 'track mean speed' and track ‘directionality’ metrics for each condition are summarized in Tukey boxplots.
The effect size (d, Cohen's d value) and the statistical significance (p, p-values from randomization tests) between the
conditions are displayed.
(C) 2D UMAP projection of the entire dataset. Data points are color-coded based on VCAM and ICAM conditions.
(D) Resultant clusters from the HDBSCAN analysis on the 2D UMAP projection. Euclidean distance served as the
metric for clustering. Each identified cluster is color-coded.
(E) Fingerprint plot showcasing the distribution percentage of track in each cluster across different conditions.
(F) Heatmap representation, normalized using Z-scores, displaying variations in selected track metrics among the
clusters. Full heatmaps are available in the Zenodo archive of this dataset.
(G) The 'track mean speed,' track ‘directionality,’ and ‘mean (cell) circularity‘ metrics for each cluster are summarized
in a Tukey boxplot format as in (B).
(H) The 'track mean speed,' track ‘directionality,’ and ‘mean (cell) circularity‘ metrics for each condition for Cluster 4
are summarized in a Tukey boxplot format as in (B).
For all box plots, the vertical whiskers extend to data points within 1.5× the interquartile range, and the values for
each track are shown as dots. Each biological replicate is displayed next to each other from R1 to R3 (left to right).
Plot axes are limited to 10x the interquartile range.

Studying cancer cell migration using CellTracksColab
Next, we analyzed a new dataset of collectively migrating cancer cells (Fig. 3A). In this
dataset, breast cancer cells expressing a CTRL shRNA or a shRNA targeting the
filopodial protein MYO10 were allowed to migrate either beneath a collagen gel or within
standard media (data describing the migration behavior of these cells in standard media
was previously reported here19). Automated cell tracking was achieved using StarDist
and TrackMate algorithms1. This larger dataset encompasses 117 fields of view (videos)
spread across four conditions and three biological repeats. CellTracksColab compiled
this dataset in around 6 minutes using Colab, storing 49,268 tracks and 3,262,747
tracked objects.

As with the T-cell dataset, we first performed quality control steps after computing
additional track metrics. In the case of the breast cancer cell dataset, our quality control
revealed some challenges: First, the third biological repeat (R3) did not cluster with the
others (Fig. S3A). Additionally, the dataset was unbalanced, with the third repeat
contributing disproportionately more tracks (Fig. 3B). Together, this analysis could
indicate an issue with this third biological repeat and signal that the experiments might
need to be repeated a fourth time. In addition, given this imbalance, we deemed it
imperative to resample the dataset to ensure that R3's data does not unduly influence
the overall conclusions. To ensure the robustness of the resampling, CellTracksColab
allows for performing a statistical comparison between the original and resampled data
per condition and track metric. The outcomes of this comparison are succinctly
visualized in a heatmap, providing a clear and accessible way to assess the effects of
resampling on the dataset's overall distribution (Fig. S3B). Post-resampling, the dataset
contains 1,337 tracks for each condition and repeat (Fig. S3C).
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Figure 3: Exploring cancer cell migration using CellTracksColab

(A) MCF10DCIS.com lifeact-RFP cells, labeled with SiR-DNA, were recorded live using a spinning disk confocal
microscope and tracked using StarDist and TrackMate. Detected nuclei and tracks (colors indicate track ID) are
displayed. Scale bar: 100 µm.
(B) This panel presents a stacked histogram showcasing the number of tracks for each biological repeat under
different conditions. Each biological repeat is color-coded, and each histogram segment's specific number of tracks is
annotated.
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(C) The 'track mean speed' and ‘directionality’ metrics for each condition (resampled dataset) are summarized in a
Tukey boxplot format. The p-value and Cohen’s d-value heatmaps are shown in Fig. S4A and S4B.
(D) 2D UMAP projection of the entire dataset, using all available track metrics for dimensionality reduction. Data
points are color-coded based on the conditions.
(E) A fingerprint plot showcasing the distribution percentage of each cluster across different conditions (clustering is
shown in Fig. S4C).
(F) Distance measurement of 10 selected tracks to the monolayer leading edge. The image on the left is the raw
microscopy image. The image on the right was generated by CellTracksColab to visually validate that the distance
measurements are correct. The yellow dots indicate the randomly selected tracks, and the red circles indicate the
measured distance. The leading edge is displayed in white. Scale bar: 100 µm.
(G) The 'Direction Movement' metric for each condition (whole dataset) is summarized in a Tukey boxplot format. This
metric is calculated as EndDistance - StartDistance (the distances of the track from the leading edge at the end and
the start of the tracking period, respectively). A positive value indicates moving away from the leading edge over time,
and a negative value suggests moving closer. The p-value and Cohen's d-value heatmaps are shown in Fig. S4G.
(H) After separating the tracks based on their maximal distance to the leading edge (close, distance < 75 µm; far,
distance > 75 µm), the track 'directionality' metric for each condition (whole dataset) was summarized in a Tukey
boxplot. The mirrored heatmap displaying the Cohen's d value between each condition is shown on the right.
For all box plots, the vertical whiskers extend to data points within 1.5× the interquartile range, and the values for
each track are shown as dots. Each biological replicate is displayed next to each other from R1 to R3 (left to right).
Plot axes are limited to 10x the interquartile range.

In our analysis of the resampled dataset using CellTracksColab, we focused on key
track metrics such as mean speed and directionality to elucidate patterns of collective
migration. We find that shMYO10 cells migrate slower than control cells, a pattern that
persists with cells migrating beneath the collagen gel (Fig. 3C and Fig. S4A).
Intriguingly, a closer examination of individual tracks revealed that cells in the third
biological repeat (R3) exhibited a faster movement, yet this did not alter the overall
migration differences observed in the dataset (Fig. 3C). Without a collagen gel, we
observed no significant differences in the directionality of migration between the
conditions (Fig. 3C and Fig. S4B). However, MYO10-silenced cells displayed increased
directionality under the collagen gel compared to control cells, which was an
unexpected finding (Fig. 3C).

Further analysis utilizing 2D UMAP projections of the whole dataset revealed challenges
in cluster generation likely due to the similarity in track characteristics, a common
occurrence in collective migration (Fig. 3D). Nevertheless, by employing the Canberra
distance, distinct clusters were successfully delineated (Fig. S4C). These clusters
provided a clear 'fingerprint' for each condition, with cluster 2 highlighting key
differences between conditions (Fig. 3E). Cluster 2 is characterized by tracks of low
speed but high directionality (Fig. S4D). Within cluster 2, MYO10-silenced cells showed
increased directionality compared to CTRL cells in the presence of a collagen gel (Fig.
S4E). Additionally, CTRL cells in this cluster moved faster than their MYO10-silenced
counterparts (Fig. S4F).

In the study of collective migration, a critical aspect to consider is the distinct behavior of
leading cells compared to those positioned further from the leading edge20. To address
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this, we used the CellTracksColab spatial analysis module to measure each track's
distance to the leading edge over time (Fig. 3F). Interestingly, overall, we observed no
significant differences among the conditions in the cells' capability to target the leading
edge (Fig. 3G and Fig. S4E). Yet, the 'Direction Movement' metric revealed a complex
scenario: while, on average, cell distance to the leading edge does not change between
the beginning and the end of the track, the data distribution was broad. Many tracks
were found closer to the leading edge by the end of the tracking period, while others
were found to be further away (Fig. 3G).

Delving deeper, CellTracksColab allowed us to segregate the tracks based on their
maximum distance to the leading edge, distinguishing between tracks proximal to and
distant from the monolayer edge. This stratified analysis unveiled that, across all
conditions, cells closer to the leading edge exhibited more directional movement
compared to those further away (Fig. 3H). Notably, in the presence of a collagen gel,
silencing MYO10 resulted in more directional movement, irrespective of the cells'
proximity to the leading edge (Fig. 3H). This example highlights how CellTracksColab
can help extract spatial insights from tracking data. Furthermore, the spatial metrics
derived from these analyses can enrich dimensionality reduction analyses, potentially
helping unveil additional nuanced behaviors in tracking data.

Studying filopodia dynamics using CellTracksColab
In our final example, we aimed to showcase the versatility of CellTracksColab by
exploring a filopodia dynamics dataset21, diverging from our previous focus on cell
migration. This study involved U2OS cells expressing different MYO10 constructs, a
protein-inducing filopodia formation that also accumulates at their tips22 (Fig. 4A). We
tracked MYO10 puncta in live cells to investigate the dynamics of filopodia induced by
three MYO10 variants: the wild type (MYO10WT), a mutant lacking the MyTH4/FERM
domain (MYO10ΔFERM), and a chimera (MYO10TH), where MYO10's FERM domain is
replaced by that from TLN121. The dataset encompasses three experimental conditions,
each with three biological replicates and a total of 112 videos. Utilizing CellTracksColab
in Colab, we efficiently compiled this dataset, which included 91,825 tracks and nearly
1.5 million tracked objects, in around 4 minutes.

We started the analysis by filtering out tracks lasting for less than 25 seconds, resulting
in a refined dataset comprising 57,487 tracks and 1,377,019 objects. Utilizing UMAP
coupled with clustering analysis (Fig. 4B and Fig. S5A), we identified several distinct
clusters, providing a window into the intricate behaviors of filopodia (Fig. S5B).
However, the fingerprint plot revealed a similar distribution of tracks across clusters
within each experimental condition (Fig. 4C). Given our focus on differences between
the MYO10 constructs, we did not extensively investigate individual clusters.
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Quality control assessments highlighted that the biological repeats were not clustering
cohesively and revealed an imbalance in the dataset across both repeats and
conditions (Fig. S5C and S5D). Consequently, we resampled the data to ensure a more
balanced representation before proceeding with the analysis of track metrics.

Post-resampling, we observed notable distinctions: MYO10WT filopodia exhibited greater
stability, evidenced by longer lifetimes (track duration) and slower speeds, compared to
MYO10ΔFERM and MYO10TH filopodia (Fig. 4D). Interestingly, MYO10ΔFERM filopodia had a
larger area than MYO10WT, and while MYO10TH filopodia also showed a statistically
significant difference in area from MYO10WT (p-value < 0.001), the low Cohen's d value
suggests a negligible practical difference between these conditions (Fig. 4D). This
observation highlights the importance of using both Cohen's d and p-values when
comparing conditions, as it provides a more nuanced understanding of the data.

Figure 4: Exploring filopodia dynamics using CellTracksColab
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(A) A U2OS cell expressing MYO10WT-GFP was imaged live using an Airyscan confocal microscope. MYO10 puncta
were then tracked using StarDist and TrackMate. Detected MYO10 puncta and tracks (colors indicate track ID) are
displayed. Scale bar: 25 µm.
(B) 2D UMAP projection of the entire dataset, using all available track metrics for dimensionality reduction. Data
points are color-coded based on the conditions.
(C) A fingerprint plot showcasing the distribution percentage of each cluster across different conditions (clustering is
shown in Fig. S5A).
(D) The 'track mean speed', the 'track duration, the spot 'mean area', and the track ‘spatial coverage’ for each
condition are summarized in Tukey boxplots. The effect size (d, Cohen's d value) and the statistical significance (p,
p-values from randomization tests) between the MYO10WT and the indicated conditions are displayed.
For all box plots, the vertical whiskers extend to data points within 1.5× the interquartile range, and the values for
each track are shown as dots. Each biological replicate is displayed next to each other from R1 to R3 (left to right).
Plot axes are limited to 10x the interquartile range.
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Discussion
Here, we introduced the CellTracksColab platform, a tool designed for the life sciences
community that offers a user-friendly solution for tracking data analysis.
CellTracksColab integrates several functionalities for tracking data analysis, including
track visualization, population analysis, statistical assessments, and dimensionality
reduction.

The easiest way to start using CellTracksColab is via the Google Colaboratory
framework, which significantly simplifies access and overcomes common barriers such
as complex software installations. Its intuitive graphical user interface effectively bridges
the gap between sophisticated computational methods and researchers with limited
programming skills, making it more inclusive. However, it is essential to acknowledge
the limitations of the Google Colaboratory environment. One of the primary constraints
is the limited runtime, as sessions in Colab are typically capped, which can interrupt
longer analytical processes. Additionally, the computing power (especially the runtime
RAM) and speed offered by the free version of Colab may not suffice for massive
datasets. There are also concerns regarding data privacy. To mitigate these issues,
CellTracksColab can operate locally via Jupyter notebooks. Running the platform locally
enables users to utilize their computational resources, providing extended runtime,
increased processing power, and better control over data privacy. However, in a
standard Jupyter Notebook environment, the code is exposed by default, which might
make the interface seem less streamlined compared to the encapsulated Colab version.
For those who prefer the Colab interface but want to use their local machine's
resources, connecting Google Colab to a local Python environment is a viable option.
This hybrid approach leverages the familiar Colab interface while utilizing local
computational power. We believe that these three modalities—Google Colaboratory,
local Jupyter notebooks, and a hybrid local Colab connection—provide comprehensive
options to accommodate the preferences and needs of most users.

Existing image repositories, such as the BioImage Archive23 and the Image Data
Resource24, demonstrate the feasibility and value of sharing microscopy data. Analyzed
tracking datasets are also very valuable; they hold significant potential for reanalysis
and meta-analysis and offer a more manageable alternative to storing raw video
footage25. Moreover, they can serve the purpose of new machine-learning tracking
algorithm development and benchmarking. Yet, their widespread sharing remains
limited, and publicly available analyzed datasets are relatively scarce. This scarcity is
partly due to the need for a standardized format for sharing tracking results.
CellTracksColab partially addresses this challenge by adopting a unified format for
storing tracking data and simplifying the sharing of tracking datasets. Additionally, the
platform includes a streamlined notebook designed for easy loading, viewing, and
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replotting previously analyzed datasets. This feature enhances data analysis's
transparency and promotes reproducibility, aligning with the FAIR (Findable, Accessible,
Interoperable, and Reusable) principles in scientific research.

Despite its robust capabilities, CellTracksColab has certain limitations we aim to
address in future updates. Currently, the platform has limited support for analyzing
tracks in 3D space. While the platform can handle 3D + time datasets for metric
computation, quality control, and dimensionality reduction tasks, it falls short in certain
areas. Specifically, some of its analysis modules, including track visualization and
spatial analysis, are optimized only for 2D + time datasets. In addition, CellTracksColab
is not currently adapted for lineage tracing studies. Researchers focusing on lineage
tracing may explore alternative tools specifically developed for such analyses1,3,26.

We also plan to enhance CellTracksColab by introducing additional analytical features.
This includes the capability to examine time-series data, such as analyzing variations in
fluorescent reporters within tracked objects over time, which could provide deeper
insights into dynamic biological processes27,28. Furthermore, we intend to extend our
data loader for other popular tracking tools, broadening the platform's compatibility and
ease of integration with existing workflows. In conclusion, we believe that
CellTracksColab represents a significant step forward in tracking data analysis in life
sciences. Its user-friendly design and robust analytical capabilities allow researchers to
explore and understand the complexities of biological motion and behavior. As we
continue to develop and enhance CellTracksColab, we anticipate it becoming a useful
tool in the life sciences toolkit, aiding in discovering and understanding new biological
insights.
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Materials and Methods
Implementation

CellTracksColab is implemented as a series of interactive Jupyter notebooks. The
platform utilizes Python as its primary programming language, leveraging various
libraries such as Pandas for data manipulation, Matplotlib, Seaborn for data
visualization, and UMAP and HDBSCAN for dimensionality reduction and clustering
analyses. The notebook's architecture facilitates ease of use while providing robust data
analysis capabilities. The notebooks are structured to guide users through each step of
the analysis process, from data import and preprocessing to advanced statistical and
spatial analyses. Each notebook contains detailed instructions and documentation to
assist users in customizing the analysis to their specific datasets.

Data and software availability

Multiple test datasets are available on Zenodo. They include the two test datasets that
can be directly downloaded from within the CellTracksColab notebooks29,30. In addition,
the three datasets showcased in this study, their tracking files, and the CellTracksColab
results are also available on Zenodo31–33.

The code for CellTracksColab is publicly available under the MIT license, encouraging
broad utilization and adaptation. CellTracksColab's GitHub repository serves as a
dynamic platform for tracking the evolution of the code across various versions. Users
are encouraged to report issues and suggest features directly through the GitHub
interface. A stable version of the code and associated documentation is also archived
on Zenodo34.

The T cell dataset.

The T cell dataset used is available on Zenodo31 and has been detailed in previous
publications1,17,18. In summary, Lab-Tek 8 chamber slides (ThermoFisher) were prepared
by overnight coating with either 2 μg/mL ICAM-1 or VCAM-1 at a temperature of 4°C.
Subsequently, activated primary mouse CD4+ T cells were cleansed and suspended in
L-15 media, enriched with 2 mg/mL D-glucose. These T cells were then placed into the
chamber slides and incubated for 20 minutes. Post-incubation, a gentle wash was
performed to eliminate all unattached cells. The imaging process was conducted using
a 10x phase contrast objective at 37°C, utilizing a Zeiss Axiovert 200M microscope
equipped with an automated X-Y stage and a Roper EMCCD camera. Time-lapse
imaging was executed at intervals of 1 minute over 10 minutes, employing SlideBook 6
software from Intelligent Imaging Innovations.
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Cells were automatically tracked using StarDist, directly called within TrackMate1,15,35.
The StarDist model was trained using ZeroCostDL4Mic11 and is publicly available on
Zenodo36. This model generated excellent segmentation results on our test dataset (F1
score > 0.99). In TrackMate, the StarDist detector custom model (score threshold = 0.41
and overlap threshold = 0.5) and the Simple LAP tracker (linking max distance = 30 µm;
gap closing max distance = 15 µm, gap closing max frame gap = 2 frames) were used.

In CellTracksColab, we conducted a dimensionality reduction analysis employing
Uniform Manifold Approximation and Projection (UMAP). The UMAP settings were as
follows: number of neighbors (n_neighbors) set to 10, minimum distance (min_dist) to 0,
and number of dimensions (n_dimension) to 2. This analysis utilized an array of track
metrics, including:

NUMBER_SPOTS, NUMBER_GAPS, NUMBER_SPLITS, NUMBER_MERGES,
NUMBER_COMPLEX, LONGEST_GAP, TRACK_DISPLACEMENT,
TRACK_MEAN_QUALITY, MAX_DISTANCE_TRAVELED, CONFINEMENT_RATIO,
MEAN_STRAIGHT_LINE_SPEED, LINEARITY_OF_FORWARD_PROGRESSION,
MEAN_DIRECTIONAL_CHANGE_RATE, Track Duration, Mean Speed, Median
Speed, Max Speed, Min Speed, Speed Standard Deviation, Total
Distance Traveled, Directionality, Tortuosity, MEAN_CIRCULARITY,
MEAN_SOLIDITY, MEAN_SHAPE_INDEX, MEDIAN_CIRCULARITY,
MEDIAN_SOLIDITY, MEDIAN_SHAPE_INDEX, STD_CIRCULARITY,
STD_SOLIDITY, STD_SHAPE_INDEX, MIN_CIRCULARITY, MIN_SOLIDITY,
MIN_SHAPE_INDEX, MAX_CIRCULARITY, MAX_SOLIDITY, MAX_SHAPE_INDEX

Subsequently, clustering analysis was performed using Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN). The parameters included
clustering_data_source set to UMAP, min_samples at 20, min_cluster_size at 200, and
the metric employed was Euclidean.

The breast cancer cell dataset.

The tracked breast cancer cell dataset is available on Zenodo33. In this experiment,
approximately 50,000 shCTRL or shMYO10 lifeact-RFP DCIS.COM cells19 were seeded
into one well of an ibidi culture-insert 2 well pre-placed in a µ-Slide 8 well. The cells
were cultured for 24 hours, after which the culture insert was removed to create a
wound-healing assay setup. When appropriate, a fibrillar collagen gel (PureCol EZ Gel)
was applied over the cells and allowed to polymerize for 30 minutes at 37°C. Standard
culture media was added to all wells, and the cells were left to migrate/invade for two
days37. Before live cell imaging, the cells were treated with 0.5 µM SiR-DNA
(SiR-Hoechst, Tetu-bio) for two hours. Imaging was performed over 14 hours using a
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Marianas spinning-disk confocal microscope system. This system included a Yokogawa
CSU-W1 scanning unit mounted on an inverted Zeiss Axio Observer Z1 microscope
(Intelligent Imaging Innovations, Inc.). Imaging was conducted using a 20x (NA 0.8) air
Plan Apochromat objective (Zeiss), and images were captured at 10-minute intervals.

Cell tracking was conducted using Fiji15 and TrackMate1. The Stardist detector was
employed to detect nuclei using the Stardist versatile model35. Tracks were created
using the Kalman tracker (a maximum frame gap of 1, a Kalman search radius of 20
µm, and a linking maximum distance of 15 µm). Post-tracking, tracks were filtered so
that each track had to contain more than six spots, ensuring a significant amount of data
per track, and the total distance traveled by cells had to be greater than 89 µm.

In CellTracksColab, we conducted a dimensionality reduction analysis employing
Uniform Manifold Approximation and Projection (UMAP). The UMAP settings were as
follows: number of neighbors (n_neighbors) set to 10, minimum distance (min_dist) to 0,
and number of dimensions (n_dimension) to 2. This analysis utilized an array of track
metrics, including:

NUMBER_SPOTS, NUMBER_GAPS, NUMBER_SPLITS, NUMBER_MERGES,
NUMBER_COMPLEX, LONGEST_GAP, TRACK_DISPLACEMENT,
TRACK_MEAN_QUALITY, MAX_DISTANCE_TRAVELED, CONFINEMENT_RATIO,
MEAN_STRAIGHT_LINE_SPEED, LINEARITY_OF_FORWARD_PROGRESSION,
MEAN_DIRECTIONAL_CHANGE_RATE, Track Duration, Mean Speed, Median
Speed, Max Speed, Min Speed, Speed Standard Deviation, Total
Distance Traveled, Directionality, Tortuosity, Total Turning
Angle, Spatial Coverage, MEAN_MEAN_INTENSITY_CH1,
MEAN_MEDIAN_INTENSITY_CH1, MEAN_MIN_INTENSITY_CH1,
MEAN_MAX_INTENSITY_CH1, MEAN_TOTAL_INTENSITY_CH1,
MEAN_STD_INTENSITY_CH1, MEAN_CONTRAST_CH1, MEAN_SNR_CH1,
MEAN_ELLIPSE_X0, MEAN_ELLIPSE_Y0, MEAN_ELLIPSE_MAJOR,
MEAN_ELLIPSE_MINOR, MEAN_ELLIPSE_THETA,
MEAN_ELLIPSE_ASPECTRATIO, MEAN_AREA, MEAN_PERIMETER,
MEAN_CIRCULARITY, MEAN_SOLIDITY, MEAN_SHAPE_INDEX,
MEDIAN_MEAN_INTENSITY_CH1, MEDIAN_MEDIAN_INTENSITY_CH1,
MEDIAN_MIN_INTENSITY_CH1, MEDIAN_MAX_INTENSITY_CH1,
MEDIAN_TOTAL_INTENSITY_CH1, MEDIAN_STD_INTENSITY_CH1,
MEDIAN_CONTRAST_CH1, MEDIAN_SNR_CH1, MEDIAN_ELLIPSE_X0,
MEDIAN_ELLIPSE_Y0, MEDIAN_ELLIPSE_MAJOR, MEDIAN_ELLIPSE_MINOR,
MEDIAN_ELLIPSE_THETA, MEDIAN_ELLIPSE_ASPECTRATIO, MEDIAN_AREA,
MEDIAN_PERIMETER, MEDIAN_CIRCULARITY, MEDIAN_SOLIDITY,
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MEDIAN_SHAPE_INDEX, STD_MEAN_INTENSITY_CH1,
STD_MEDIAN_INTENSITY_CH1, STD_MIN_INTENSITY_CH1,
STD_MAX_INTENSITY_CH1, STD_TOTAL_INTENSITY_CH1,
STD_STD_INTENSITY_CH1, STD_CONTRAST_CH1, STD_SNR_CH1,
STD_ELLIPSE_X0, STD_ELLIPSE_Y0, STD_ELLIPSE_MAJOR,
STD_ELLIPSE_MINOR, STD_ELLIPSE_THETA, STD_ELLIPSE_ASPECTRATIO,
STD_AREA, STD_PERIMETER, STD_CIRCULARITY, STD_SOLIDITY,
STD_SHAPE_INDEX, MIN_MEAN_INTENSITY_CH1,
MIN_MEDIAN_INTENSITY_CH1, MIN_MIN_INTENSITY_CH1,
MIN_MAX_INTENSITY_CH1, MIN_TOTAL_INTENSITY_CH1,
MIN_STD_INTENSITY_CH1, MIN_CONTRAST_CH1, MIN_SNR_CH1,
MIN_ELLIPSE_X0, MIN_ELLIPSE_Y0, MIN_ELLIPSE_MAJOR,
MIN_ELLIPSE_MINOR, MIN_ELLIPSE_THETA, MIN_ELLIPSE_ASPECTRATIO,
MIN_AREA, MIN_PERIMETER, MIN_CIRCULARITY, MIN_SOLIDITY,
MIN_SHAPE_INDEX, MAX_MEAN_INTENSITY_CH1,
MAX_MEDIAN_INTENSITY_CH1, MAX_MIN_INTENSITY_CH1,
MAX_MAX_INTENSITY_CH1, MAX_TOTAL_INTENSITY_CH1,
MAX_STD_INTENSITY_CH1, MAX_CONTRAST_CH1, MAX_SNR_CH1,
MAX_ELLIPSE_X0, MAX_ELLIPSE_Y0, MAX_ELLIPSE_MAJOR,
MAX_ELLIPSE_MINOR, MAX_ELLIPSE_THETA, MAX_ELLIPSE_ASPECTRATIO,
MAX_AREA, MAX_PERIMETER, MAX_CIRCULARITY, MAX_SOLIDITY,
MAX_SHAPE_INDEX, MaxDistance_edge, MinDistance_edge,
StartDistance_edge, EndDistance_edge, MedianDistance_edge,
StdDevDistance_edge, DirectionMovement_edge, AvgRateChange_edge,
PercentageChange_edge, TrendSlope_edge

Subsequently, clustering analysis was performed using Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN). The parameters included
clustering_data_source set to UMAP, min_samples at 20, min_cluster_size at 200, and
the metric employed was Canberra.

The filopodia dataset.

The tracked filopodia dataset is available on Zenodo32 and was previously described21.
U2-OS cells expressing MYO10-GFP, a MYO10 MyTH/FERM deletion construct
(EGFP-MYO10ΔFERM), or an MYO10/TLN1 chimera construct (EGFP-MYO10TH) were
plated for at least 2 hours on fibronectin before the start of live imaging. Images were
taken every 5 seconds at 37°C on an Airyscan microscope, using a 40x objective.
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MYO10 puncta were tracked using TrackMate using the custom Stardist detector and
the simple LAP tracker (Linking max distance = 1 µm, Gap-closing max distance = 2
µm, Gap-closing max frame gap = 2 µm). The StarDist 2D model used was previously
described38. Briefly, this model was trained for 200 epochs on 11 paired image patches
[image dimensions: (512, 512), patch size: (512,512)] with a batch size of 2 and a mean
absolute error (MAE) loss function, using the StarDist 2D ZeroCostDL4Mic notebook11.

In CellTracksColab, we conducted a dimensionality reduction analysis employing
Uniform Manifold Approximation and Projection (UMAP). The UMAP settings were as
follows: number of neighbors (n_neighbors) set to 10, minimum distance (min_dist) to 0,
and number of dimensions (n_dimension) to 2. This analysis utilized an array of track
metrics, including:

NUMBER_SPOTS, NUMBER_GAPS, NUMBER_SPLITS, NUMBER_MERGES,
NUMBER_COMPLEX, LONGEST_GAP, TRACK_DISPLACEMENT,
TRACK_MEAN_QUALITY, MAX_DISTANCE_TRAVELED, CONFINEMENT_RATIO,
MEAN_STRAIGHT_LINE_SPEED, LINEARITY_OF_FORWARD_PROGRESSION,
MEAN_DIRECTIONAL_CHANGE_RATE, Track Duration, Mean Speed, Median
Speed, Max Speed, Min Speed, Speed Standard Deviation, Total
Distance Traveled, Directionality, Tortuosity, Total Turning
Angle, Spatial Coverage, MEAN_MEAN_INTENSITY_CH1,
MEAN_MEDIAN_INTENSITY_CH1, MEAN_MIN_INTENSITY_CH1,
MEAN_MAX_INTENSITY_CH1, MEAN_TOTAL_INTENSITY_CH1,
MEAN_STD_INTENSITY_CH1, MEAN_CONTRAST_CH1, MEAN_SNR_CH1,
MEAN_ELLIPSE_X0, MEAN_ELLIPSE_Y0, MEAN_ELLIPSE_MAJOR,
MEAN_ELLIPSE_MINOR, MEAN_ELLIPSE_THETA,
MEAN_ELLIPSE_ASPECTRATIO, MEAN_AREA, MEAN_PERIMETER,
MEAN_CIRCULARITY, MEAN_SOLIDITY, MEAN_SHAPE_INDEX,
MEDIAN_MEAN_INTENSITY_CH1, MEDIAN_MEDIAN_INTENSITY_CH1,
MEDIAN_MIN_INTENSITY_CH1, MEDIAN_MAX_INTENSITY_CH1,
MEDIAN_TOTAL_INTENSITY_CH1, MEDIAN_STD_INTENSITY_CH1,
MEDIAN_CONTRAST_CH1, MEDIAN_SNR_CH1, MEDIAN_ELLIPSE_X0,
MEDIAN_ELLIPSE_Y0, MEDIAN_ELLIPSE_MAJOR, MEDIAN_ELLIPSE_MINOR,
MEDIAN_ELLIPSE_THETA, MEDIAN_ELLIPSE_ASPECTRATIO, MEDIAN_AREA,
MEDIAN_PERIMETER, MEDIAN_CIRCULARITY, MEDIAN_SOLIDITY,
MEDIAN_SHAPE_INDEX, STD_MEAN_INTENSITY_CH1,
STD_MEDIAN_INTENSITY_CH1, STD_MIN_INTENSITY_CH1,
STD_MAX_INTENSITY_CH1, STD_TOTAL_INTENSITY_CH1,
STD_STD_INTENSITY_CH1, STD_CONTRAST_CH1, STD_SNR_CH1,
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STD_ELLIPSE_X0, STD_ELLIPSE_Y0, STD_ELLIPSE_MAJOR,
STD_ELLIPSE_MINOR, STD_ELLIPSE_THETA, STD_ELLIPSE_ASPECTRATIO,
STD_AREA, STD_PERIMETER, STD_CIRCULARITY, STD_SOLIDITY,
STD_SHAPE_INDEX, MIN_MEAN_INTENSITY_CH1,
MIN_MEDIAN_INTENSITY_CH1, MIN_MIN_INTENSITY_CH1,
MIN_MAX_INTENSITY_CH1, MIN_TOTAL_INTENSITY_CH1,
MIN_STD_INTENSITY_CH1, MIN_CONTRAST_CH1, MIN_SNR_CH1,
MIN_ELLIPSE_X0, MIN_ELLIPSE_Y0, MIN_ELLIPSE_MAJOR,
MIN_ELLIPSE_MINOR, MIN_ELLIPSE_THETA, MIN_ELLIPSE_ASPECTRATIO,
MIN_AREA, MIN_PERIMETER, MIN_CIRCULARITY, MIN_SOLIDITY,
MIN_SHAPE_INDEX, MAX_MEAN_INTENSITY_CH1,
MAX_MEDIAN_INTENSITY_CH1, MAX_MIN_INTENSITY_CH1,
MAX_MAX_INTENSITY_CH1, MAX_TOTAL_INTENSITY_CH1,
MAX_STD_INTENSITY_CH1, MAX_CONTRAST_CH1, MAX_SNR_CH1,
MAX_ELLIPSE_X0, MAX_ELLIPSE_Y0, MAX_ELLIPSE_MAJOR,
MAX_ELLIPSE_MINOR, MAX_ELLIPSE_THETA, MAX_ELLIPSE_ASPECTRATIO,
MAX_AREA, MAX_PERIMETER, MAX_CIRCULARITY, MAX_SOLIDITY,
MAX_SHAPE_INDEX

Subsequently, clustering analysis was performed using Hierarchical Density-Based
Spatial Clustering of Applications with Noise (HDBSCAN). The parameters included
clustering_data_source set to UMAP, min_samples at 20, min_cluster_size at 600, and
the metric employed was Canberra.
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Figure S1: Track visualization and filtering

Example of track display before (A) and after (B) smoothing and filtering. The tracks originate from a video of
migrating breast cancer cells tracked from their nuclei using TrackMate.

Figure S2: Evaluating the experimental variability in the T-cell dataset with CellTracksColab

(A) This panel presents a stacked histogram showcasing the number of tracks for each biological repeat under
different conditions, aiding in evaluating the dataset's balance. Each biological repeat is color-coded, and each
histogram segment's specific number of tracks is annotated.
(B, C) Hierarchical Clustering: These dendrograms reveal the hierarchical clustering within the dataset by utilizing the
cosine similarity metric and a complete linkage method.
(B) FOV-based Clustering Analysis: This dendrogram illustrates the clustering across the ten available Fields of View
(FOVs).
(C) Condition and Repeat-based Clustering: This dendrogram delves deeper by segregating the dataset based on
conditions and biological repeats
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Figure S3. Evaluating the experimental variability in the breast cancer cell dataset with CellTracksColab
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(A) This dendrogram utilizes the cosine similarity metric and a complete linkage method to assess the similarity in the
dataset between conditions and biological repeats.
(B) p-value heatmap comparing the differences between the data distribution before and after resampling for each
condition and repeats (selected number of track metrics).
(C) This panel presents a stacked histogram showcasing the number of tracks for each biological repeat under
different conditions, aiding in evaluating the dataset's balance. Each biological repeat is color-coded, and each
histogram segment's specific number of tracks is annotated.
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Figure S4. Exploring the breast cancer migration dataset using CellTracksColab

(A, B) p-value and Cohen's d-value mirrored heatmaps for the 'track mean speed' (A) and track 'directionality' (B)
metrics (see Fig. 3C).
(C) 2D UMAP projection of the entire breast cancer migration dataset, using all available track metrics for
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dimensionality reduction. Resultant clusters from the HDBSCAN analysis on the 2D UMAP projection. The Canberra
method served as the metric for clustering. Each identified cluster is color-coded.
(D) The 'track mean speed,' and track ‘directionality’ for each cluster are summarized in a Tukey boxplot format.
(E, F) The 'track 'directionality,' (E), and 'track mean speed, (F)' metrics for each condition for Cluster 2 are
summarized in a Tukey boxplot format. For all box plots, the vertical whiskers extend to data points within 1.5× the
interquartile range, and the values for each track are shown as dots where each biological replicate is displayed next
to each other from R1 to R3 (left to right). p-value and Cohen's d-value mirrored heatmaps are displayed on the right.
(G) p-value and Cohen's d-value mirrored heatmaps for the 'Direction Movement' metric (see Fig. 3G).

Figure S5: Exploring filopodia dynamics using CellTracksColab

(A) 2D UMAP projection of the entire filopodia dataset, using all available track metrics for dimensionality reduction.
Resultant clusters from the HDBSCAN analysis on the 2D UMAP projection. The Canberra method served as the
metric for clustering. Each identified cluster is color-coded.
(B) Heatmap representation, normalized using Z-scores, displaying variations in selected track metrics among the
clusters. Full heatmaps are available in the Zenodo archive of this dataset.
(C) This dendrogram utilizes the cosine similarity metric and a complete linkage method to assess the similarity in the
filopodia dataset between conditions and biological repeats.
(D) This panel presents a stacked histogram showcasing the number of tracks for each biological repeat under
different conditions. Each biological repeat is color-coded, and each histogram segment's specific number of tracks is
annotated.
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