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Deep learning has revolutionised the analysis of extensive mi-
croscopy datasets, yet challenges persist in the widespread adop-
tion of these techniques. Many lack access to training data,
computing resources, and expertise to develop complex mod-
els. We introduce DL4MicEverywhere, advancing our previ-
ous ZeroCostDL4Mic platform, to make deep learning more
accessible. DL4MicEverywhere uniquely allows flexible train-
ing and deployment across diverse computational environments
by encapsulating methods in interactive Jupyter notebooks
within Docker containers –a standalone virtualisation of re-
quired packages and code to reproduce a computational envi-
ronment–. This enhances reproducibility and convenience. The
platform includes twice as many techniques as originally pro-
vided by ZeroCostDL4Mic and enables community contribu-
tions via automated build pipelines. DL4MicEverywhere em-
powers participatory innovation and aims to democratise deep
learning for bioimage analysis.
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Introduction
Deep learning enables the transformative analysis of large
multidimensional microscopy datasets, but barriers remain
in implementing these advanced techniques (3, 4). Many
researchers lack access to sufficient annotated data, high-
performance computing resources, and expertise to develop,
train, and deploy complex deep-learning models. In recent
years, several approaches have been developed to democra-
tise the usage of deep learning for microscopy (4). Multi-
ple tools, such as BioImage.io, facilitate sharing and reusing
broadly useful, previously trained deep learning models, dis-
tributing them as one-click image analysis solutions (1, 5).
Yet often, deep learning models need to be trained or fine-
tuned on the end user dataset to perform well (1, 4, 6). We
previously released ZeroCostDL4Mic (2), an online platform
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Fig. 1. DL4MicEverywhere platform. a) DL4MicEverywhere eases deep learning
workflow sharing, deployment, and showcasing by providing a user-friendly inter-
active environment to train and use models. Enabling cross-platform compatibil-
ity ensures deep-learning model training reproducibility. DL4MicEverywhere con-
tributes to deep learning standardisation in bioimage analysis by promoting trans-
ferable, FAIR, and transparent pipelines. The platform exports models compati-
ble with the BioImage Model Zoo(1) and populates the Docker hub with free and
open source (FOSS) container images that developers can reuse, incrementing
the list of available workflows. b) DL4MicEverywhere accepts three types of note-
book contributions: ZeroCostDL4Mic(2) notebooks, bespoke notebooks inspired by
ZeroCostDL4Mic(2), and notebooks hosted in external repositories that are com-
pliant with our format. These contributions are automatically tested to ensure the
correct requirements and format.
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Fig. 2. a) When running DL4MicEverywhere, the user interacts with an interface to choose a notebook, image and output folder, and choose a GPU running model if possible.
b) DL4MicEverywhere will automatically identify the system architecture and requirements to build a Docker container image. If the image is not available in the Docker hub,
it is built in the user’s machine. This image is used to create a Docker container: a functional instance of the image that gathers the code environment to use the chosen
notebook. c) A Jupyter lab session is launched inside the Docker container to train, evaluate or use the chosen deep learning model. DL4MicEverywhere notebooks are
also interactive and equivalent to ZeroCostDL4Mic (2) notebooks. d-f) DL4MicEverywhere enables the use of the same notebooks in different local or remote infrastructures
such as workstations, the cloud or high-performance computing clusters. This is, researchers could run exactly the same d) super-resolution, e) artificial-labelling or g)
segmentation pipelines, among many others, in different systems.

relying on Google Colab that helped democratise deep learn-
ing by providing a zero-code interface to train and evalu-
ate models capable of performing various bioimage anal-
ysis tasks, such as segmentation, object detection, denois-
ing, super-resolution microscopy, and image-to-image trans-
lation. Here, we introduce DL4MicEverywhere, a major ad-
vancement of the ZeroCostDL4Mic (2) framework (Fig.1).
DL4MicEverywhere allows users the flexibility to train and
deploy their models across various computational environ-
ments, including Google Colab, their own computational re-
sources (e.g., desktop or laptop), or high-performance com-
puting systems. This flexibility is made possible by enclos-
ing each deep learning technique in an interactive Jupyter
notebook, which is then contained in a Docker (7)-based
environment. This enables users to install and interact
with deep learning techniques easily. Incorporating cross-
platform containerisation technology boosters the long-term
platform’s stability and reproducibility and enhances user
convenience (8).

Results

DL4MicEverywhere introduces a novel and user-friendly
graphical interface that enables users to easily access and
launch a comprehensive collection of interactive Jupyter
notebooks. Each notebook comes packaged into a Docker
container with all necessary software dependencies, as illus-
trated in Fig. 2a-c.
DL4MicEverywhere has gone beyond simply containeris-
ing notebooks, providing a zero-code interface that han-

dles all behind-the-scenes complexities. Users are not re-
quired to deal with the intricacies of Docker or configur-
ing deep learning frameworks. The intuitive interface ab-
stracts away these technical details, while the Docker en-
capsulation provides a standardised and rich environment for
executing advanced techniques reliably (Figure 2b). Re-
searchers can select a notebook, choose computing resources,
and run the corresponding deep learning-powered analysis
with just a few clicks. The platform handles deploying the
encapsulated coding environment seamlessly in the back-
ground. This allows users to train and apply models on
various computing resources they control, eliminating re-
liance on third-party platforms. Furthermore, researchers can
launch a notebook on local or remote systems with GPU
acceleration on clusters whenever available, without worry-
ing about complex software dependencies, docker container
management or losing access to deep-learning frameworks
(Fig. 2d-f). DL4MicEverywhere offers twice the number of
deep learning approaches than what was initially available
in ZeroCostDL4Mic. The platform is designed to encour-
age sharing and reuse of models via the BioImage Model
Zoo. DL4MicEverywhere’s infrastructure is strengthened by
automated build pipelines (9), which allows for the seam-
less integration of new trainable models contributed by the
community (10–13) (as shown in Fig. 1b). These con-
tributions are further facilitated through user-friendly tem-
plates, allowing new notebooks to be added independently
of the original ZeroCostDL4Mic framework. By empower-
ing participatory innovation in an open and flexible platform,
DL4MicEverywhere aims to make deep learning more ac-
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cessible for bioimage analysis. Developers can share a note-
book based on our template and metadata for their method,
and DL4MicEverywhere handles the testing and building of
fully documented and open-source containerisation. Note
that notebook containerisation allows others to reliably repli-
cate analyses and build on the latest methods. The highly
flexible nature of Docker containers encapsulating notebooks
enhances long-term reproducibility across operating systems
and computing environments. Researchers can easily share
not just code, but the full software environment required to
run it reliably. This reusable encapsulation empowers others
to replicate analysis, evaluate methods, and build on research.

Discussion

Deep learning is revolutionising microscopy through data-
driven analysis and discovery (14). However, significant bar-
riers persist in accessing these advanced techniques, includ-
ing a lack of training data, computing resources, and ex-
pertise (4, 6, 14). Proprietary platforms create technolog-
ical and cultural obstacles, while complex workflows im-
pede adoption by non-experts. DL4MicEverywhere is an
initiative that aims to make deep learning accessible to ev-
eryone by providing a flexible and community-driven plat-
form. Encapsulating software in Docker containers makes
it possible to integrate new methods and enrich the mi-
croscopy community through participatory innovation. In-
tuitive graphical user interfaces also lower the barriers to
entry, making it easier for non-experts to use the platform.
Users can rely on shared techniques while customising mod-
els across diverse hardware, retaining control over data and
analysis. The platform will particularly be useful with the
increasing development and use of cutting-edge foundation
models (15). By bundling these sophisticated models into
shareable containers, researchers can customise and exploit
them in their microscopy applications. DL4MicEverywhere
also simplifies complex deep learning workflows for non-
experts through automated pipelines, and is optimised for use
with local computational resources, high-performance com-
puting, and cloud-based solutions. This flexibility is pre-
cious for 1) sensitive biomedical data, where privacy risks
may limit reliance on public cloud platforms, and 2) contin-
uously scaling data such as time-lapse volumetric images or
high-throughput high-content imaging data, where storage,
dissemination and access rely on institutional infrastructures
with specific data sharing protocols. DL4MicEverywhere
also adheres to FAIR principles, enhancing discoverability
and interoperability. We expect DL4MicEverywhere to rep-
resent an important step towards reliable, transparent, and
participatory artificial intelligence in microscopy.

Code availability. The source code, documentation, and tu-
torials for DL4MicEverywhere can be found at https://
github.com/HenriquesLab/DL4MicEverywhere.
DL4MicEverywhere is made available under the Creative
Commons CC-BY-4.0 license.
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Methods
DL4MicEverywhere Platform Implementation. The core
DL4MicEverywhere platform was implemented in Bash
packaging and managing Python notebook workflows
through Docker containers. An overview of the key technical
components is provided below.

Docker Containerization. Each notebook is encapsulated
into a Docker container, including all dependencies required
for smooth runtime (Docker v24.0.5, Docker Inc.). These
containers are functional instances of Docker images –soft-
ware units that contain the virtualisation of a specific com-
putational environment, with all the specified dependencies
and packages included. Images were built from Ubuntu
(v20.04/22.04) base images, with optional Nvidia CUDA
support for GPU acceleration. Python (v3.7/3.8/3.10), deep
learning packages (TensorFlow, Keras or Pytorch), and note-
book packages were installed according to the requirements
into the containers. Unique containers were constructed
for each notebook using a parameterised Docker file build
process, taking metadata like notebook URL and software
versions as input. These images are uploaded to Docker
hub so they can be distributed as free and open source
(FOSS) and belong to the Open Container Initiative (OCI)
(https://opencontainers.org/).

Launch Script and GUI. A Bash shell script launch.sh was
implemented to manage the building, running, and monitor-
ing of the notebook containers based on user input. Key
functions included argument parsing, installation checking,
Docker image building, and Jupyter Lab invocation within
the container. A graphical user interface was additionally
created using Wish (a Tcl/Tk application) to enable intuitive
notebook and parameter selection through a desktop window.
This is invoked by the launch script and passed user selec-
tions.

Configuration Metadata. Inspired by the BioImage Model
Zoo (1) specifications, notebook container construction was
driven by human-readable YAML configuration files spec-
ifying necessary build metadata for each notebook, includ-
ing the URL of the notebook itself, Python requirements, and
Docker parameters. These configurations were loaded by the
launch script when initialising a container. This format estab-
lishes a basis for a seamless connection with the BioEngine
of the Zoo.
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Testing and Deployment Pipelines. GitHub Actions
workflows were implemented to automatically build and pub-
lish container images for each new notebook, handling test-
ing across platforms like AMD64 and ARM64. Images
were versioned based on notebook metadata and published to
DockerHub for distribution. Strict conventions enforced by
templates facilitated notebook contributions from the com-
munity. These contributions are further checked via GitHub
Actions to assert that they follow the specified format with
valid URLs and that it is possible to build a Docker image.

Jupyter Notebooks and Widgets. Notebooks were
adapted from the ZeroCostDL4Mic Colab format to interac-
tive Jupyter notebooks leveraging ipywidgets for a simplified
user interface requiring no coding. Parameters could be
configured via graphical elements rather than edits to code.
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