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Live-cell imaging in the deep learning era
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Abstract
Live imaging is a powerful tool, enabling scientists to observe
living organisms in real time. In particular, when combined with
fluorescence microscopy, live imaging allows the monitoring of
cellular components with high sensitivity and specificity. Yet,
due to critical challenges (i.e., drift, phototoxicity, dataset size),
implementing live imaging and analyzing the resulting datasets
is rarely straightforward. Over the past years, the development
of bioimage analysis tools, including deep learning, is chang-
ing how we perform live imaging. Here we briefly cover
important computational methods aiding live imaging and
carrying out key tasks such as drift correction, denoising,
super-resolution imaging, artificial labeling, tracking, and time
series analysis. We also cover recent advances in self-driving
microscopy.
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Introduction
Live imaging helps us understand life’s complexity by
recording how tissues, cells, and molecules behave over
time. Yet, implementing live imaging and analyzing mi-
croscopy videos remain challenging (Figure 1a). Firstly,
www.sciencedirect.com
live imaging is frequently susceptible to drift, leading to
an unwanted sample displacement over time. Secondly,
when using fluorescence microscopy, balancing between
imaging frequency, resolution, and specimen health is
critical and challenging [1]. Finally, live imaging experi-
ments tend to generate an avalanche of data that can be
hard to extract and analyze (Figure 1a).

To mitigate some of these issues, there is ongoing work
on hardware improvement. For example, gentler illu-
mination strategies and more sensitive detectors can
reduce phototoxicity [2,3]. However, hardware im-
provements are only part of the solution. Increasingly,
powerful software advancements enhance microscopy,
providing us with more information from our samples
(e.g., Refs. [4e6]). Over the past few years, significant
strides have been made in data processing tools, broadly
categorized into 1) tools aiming at improving live im-
aging datasets and 2) tools aiming at extracting quanti-

tative information from live imaging datasets
(Figure 1b). Many of these tools now operate through
deep learning (DL), a subfield of artificial intelligence
that can autonomously identify relevant image features
to carry out specific tasks. This review highlights con-
cepts and recent tools useful for researchers interested
in live imaging. The tools and articles highlighted are
selected based on our experience working with live
imaging data and our enthusiasm for this rapidly
evolving field. This review is not exhaustive, instead we
aim to offer a concise overview of available tools to

inspire and empower users.
Deep learning and video analysis
DL is revolutionizing our ability to analyze microscopy
images (see Refs. [7,8] for in-depth reviews). When using
DL, a multi-layer artificial neural network, also known as
a Deep Neural Network (DNN), is first trained on a

dataset to create a “model” capable of executing a spe-
cific bioimage analysis task (Figure 2a). Once trained, the
model can then be used on similar images. Because of
this, the training step is essential as it dictates the per-
formance and specificity of the DNN [9].

When selecting a DLmethod for processing live imaging
data, users must consider the type of training data the
chosen approach requires, along with the dimensionality
of their data. Typically, DL methods are trained in a
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Figure 1
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Live-cell imaging main challenges and computational solutions.
(a) Live fluorescence imaging presents unique challenges that require a careful balance between managing light sensitivity and ensuring optimal spatial,
temporal, and spectral resolution to observe intended biological phenomena accurately. Upon data acquisition, researchers need to select the most
effective methods to derive biological insights from their video, with strategies spanning from manual analysis to turn-key solutions or custom-developed
analysis pipelines. Each approach has strengths and limitations, particularly throughput, speed and accuracy. This figure, illustrated as spider plots,
underscores the need for trade-offs in acquiring and analyzing live imaging data.
(b) Computational tools designed to handle live cell imaging datasets can be primarily divided into two categories: (i) tools that improve live cell imaging
data and mitigate phototoxicity and (ii) tools that facilitate data extraction and analysis. The former category includes methods for drift correction,
denoising, resolution enhancement, and artificial labeling. The latter encompasses segmentation, object detection, and tracking tools, followed by time
series analysis. Integrating these tools into microscope acquisition software to autonomously control microscope acquisition parameters paves the way
for self-driving microscopes. The tool categories are displayed in no particular order, as their use depends on the datasets and needs. The central arrow
illustrates that self-driving microscopes can dynamically utilize these approaches to control microscope acquisition parameters.
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Figure 2
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Deep learning and video analysis.
(a) The DL pipeline. A DL model must first be trained using a training dataset. This step is generally time-consuming and takes hours to weeks,
depending on the size of the training dataset. Once trained, a model can be directly applied to other images and generate predictions. This second step is
generally much faster (seconds to minutes).
(b) Type of training datasets. In a supervised training fashion, a collection of representative input images, each coupled with their anticipated results
(i.e., the ground truth), is given to the DNN. Here, the training dataset includes matching pairs of noisy and high signal-to-noise ratio images. Alternate
training methods include unsupervised training, where the model is trained with inputs and outputs not necessarily from the same field of view, and self-
supervised training, where paired datasets are generated solely from the input images.
(c) DL and data dimensions. Live cell imaging datasets can have multiple dimensions. Given that DL tools for bioimage analysis are typically designed to
handle up to three dimensions, applying these tools to video processing necessitates varied strategies, contingent on the number of dimensions present
in the data for processing. Here a 2D model represent a model capable to process 2D data. A 3D model is capable to process 3D data. The microscopy
images displayed for all panels are breast cancer cells labeled with silicon rhodamine DNA to visualize the nuclei and imaged using a spinning disk
confocal microscope.
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supervised manner and rely on paired sets of images.
However, alternate strategies to deal with unpaired
datasets exist, such as unsupervised and self-supervised

training (Figure 2b). Depending on the data available,
these methods may offer additional flexibility.

A key characteristic of microscopy videos is the inherent
consistency of information across sequential frames.
Exploiting this temporal consistency can significantly
enhance the precision of data analysis. DL algorithms,
adept at handling multi-dimensional data, are particu-
larly effective in analyzing 3D microscopy datasets.
www.sciencedirect.com
However, the current landscape of DL methods for
bioimage analysis is focused on 2D and 3D volumetric
datasets. As a result, analyzing 2D, 3D, and 4D videos

using DL is often performed frame by frame, which
overlooks the time consistency in the data. 3D volu-
metric approaches can be used to process 2D videos, but
this might not fully harness the potential of the data and
is generally suboptimal in terms of memory (Figure 2c).
Drift and bleach correction
Microscopy videos must often be corrected to ensure
consistency across time frames. This can include
Current Opinion in Cell Biology 2023, 85:102271

www.sciencedirect.com/science/journal/09550674


4 Cell Dynamics 2023
removing unwanted drift and upholding image quality
throughout the video. While DL algorithms can perform
these tasks, they are generally not used for this purpose
due to their slow speed or the lack of appropriate
Figure 3
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Example of computational tools that can improve live cell imaging movi
This figure illustrates the power and versatility of computational tools in enha
images.
(a) Time projection of drifting live images of nuclei, captured by a widefield mic
from purple (first frame) to white (last frame), denotes the temporal progressi
(b) A cancer cell in the mouse lung vasculature, in motion and imaged via an
projection. Channel misalignment has been corrected using Fast4DReg [10]—
(c) Noisy images of nuclei, acquired using a spinning disk confocal microsco
Ref. [9])—scale bar: 50 mm.
(d) Breast cancer cells labeled with lifeact-RFP were imaged live using 3D S
Ref. [19])—scale bar: 5 mm.
(e) Cells labeled with Lifeact were imaged using a widefield microscope [45].
learning network (as described in Ref. [33])—scale bar: 5 mm.
(f) This illustration showcases how a DL network like CAFI can enrich the tem
[39].
(g) Brightfield microscopy was used to image migrating breast cancer cells, an
a Pix2pix model [46]—scale bar: 100 mm.
(h) Breast cancer cells labeled with lifeact-RFP were imaged using a spinnin
image using a Pix2pix model ([46], as described in Ref. [19])—scale bar: 100

Current Opinion in Cell Biology 2023, 85:102271
training datasets. Drift correction accounts for un-
wanted shifts in the position of the specimen over time,
ensuring consistent frame and channel alignment
(Figure 3a and b). For this purpose, we routinely use
Current Opinion in Cell Biology

es.
ncing the quality, resolution, and content of various types of microscopy

roscope, corrected using Fast4DReg [10]. The color gradient, transitioning
on—scale bar: 50 mm.
Airyscan confocal microscope, is displayed through a maximum-intensity
scale bar: 10 mm.

pe, were denoised using a CARE 2D model ([17], as described in

IM. Images were restored using a CARE 3D model ([17], as described in

The increased image resolution was achieved using the DFCAN deep

poral resolution of a live cell imaging dataset through smart interpolations

d the nuclei image was digitally generated from the brightfield image using

g disk confocal. The nuclei image was digitally generated from the lifeact
mm.
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Live-cell imaging in the deep learning era Pylvänäinen et al. 5
Fast4DReg [10] and Correct 3D drift [11]. Bleach
correction addresses the signal loss occurring when
specimens are exposed to too much light over prolonged
periods or to uneven illumination. To correct our movies,
we routinely use the Bleach correction ImageJ plugin
(also available in Napari) [12,13].
Denoising and restoring live imaging data
Fluorescent live imaging necessitates low concentra-
tions of fluorescent labels and minimal laser power to

prevent the disruption of biological processes and
ensure the sample’s health. This often leads to the
acquisition of noisy images. DL has been successfully
applied to remove this noise while preserving the useful
signal, thereby facilitating the extraction of meaningful
biological information from the imaging data (i.e.,
[14,15]). DL-based denoising algorithms can be broadly
categorized into two groups based on the required
training datasets: (i) supervised and (ii) self-supervised
(for deeper review, see Ref. [16].

Supervised DL algorithms, such as CARE [17] and 3D-
RCAN [18], necessitate paired high- and low-quality
images for training. Remarkably, these tools often
extend beyond denoising tasks; they serve as compre-
hensive image restoration algorithms capable of
enhancing resolution and eliminating image artifacts,
provided they are trained with an appropriate dataset
(Figure 3c and d) [9]. These algorithms are changing
how live imaging experiments are planned. Indeed,
several strategies can be used to generate training
datasets to denoise live imaging data, such as using fixed

samples [19,20], artificially generating noisy data [21],
or collecting live data before or during the timelapse
acquisition [22].

Self-supervised algorithms such as Noise2Void [23]
allow the training of denoising models directly from
noisy images. These algorithms generally assume that
the noise is independent of the pixel location (e.g.,
Gaussian or Poisson noise). If the assumption is met,
these approaches can yield results comparable to su-
pervised training without needing a paired training

dataset. However, these algorithms may not always be
suitable if the noise spatial-independence assumption is
unmet (e.g., structured noise) [24]).

Current state-of-the-art denoising methods integrate
the knowledge about the image formation process into
the learning process, which results in impressive results
(i.e., [25,26]). User interested in denoising may
consider Aydin witch provides a number of self-
supervised, auto-tuned, and unsupervised image
denoising algorithms [27]. Of note, it is generally
advised to avoid quantifying absolute pixel intensities

after DL-based denoising, as DL processing may intro-
duce non-linear changes to the data.
www.sciencedirect.com
Improving the spatiotemporal resolution of
live imaging data
Live cell imaging aims to capture rich spatiotemporal
information while minimizing sample damage. However,
light microscopy’s w250 nm diffraction limit hinders
detailed visualization. While various super-resolution
strategies exist [28], they rarely suit extended live im-
aging due to their high laser power requirements.
Several analytical methods have demonstrated the ca-
pacity to enhance live imaging resolution. Examples of
recent non-DL algorithms that improve the resolution
of live imaging data include eSRRF [29], SACD [30],
and BF-SIM [31]. Super-resolution DL algorithms for

live imaging fall into two categories. Algorithms such as
SFSRM or DFCAN can super-pixelate an image and
predict missing details (Figure 3e) [21,32,33]. Other
DL algorithms can aid the post-processing required by
most super-resolution microscopy techniques, including
SIM [26,34,35] and single-molecule localization micro-
scopy (SMLM) [36,37].

DL-based algorithms can also be used to recover missing
temporal information via smart interpolation. For
instance DBlink aid faster live SMLM by performing

spatiotemporal interpolation [38]. As another example,
CAFI can predict intermediary images post-acquisition,
enhancing temporal resolution [39] (Figure 3f).
Artificial labeling
Artificial labeling is a computational technique that
utilizes DL to predict staining based on other micro-
scopy images [40,41]. For instance, artificial labeling can
predict a nucleus staining from brightfield or F-actin
images (Figure 3g and h). The predicted staining can
assist downstream analysis, such as segmentation and
tracking [19,20,42]. Artificial labeling is especially
beneficial for live imaging as it allows for staining re-
covery without explicit imaging, thereby improving
acquisition speed, multiplexing, and reducing photo-
toxicity. When combined with live brightfield, phase, or

digital holographic imaging, artificial labeling offers a
non-invasive, non-destructive approach for comprehen-
sive cellular structure visualization [43,44].
Segmentation and tracking
One key strategy to extract biological information from
videos is tracking, which involves following objects of
interest over time to quantify their behaviors. Tracking
is typically a two-step process: object detection at each
time point and tracking formation via detection linking
(Figure 4a). Tracking accuracy often relies on successful
object recognition, where segmentation methods
employing machine learning and DL algorithms have
demonstrated proficiency for various bioimages (for
review, see Ref. [47]). Because of this, DL segmentation
tools are now integrated into tracking platforms, such as
TrackMate [48], Cell-ACDC [49], DeepTree [50], and
Current Opinion in Cell Biology 2023, 85:102271
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Live-cell imaging in the deep learning era Pylvänäinen et al. 7
ELEPHANT [51]. These tools cater to different needs
based on the nature of the data, required features, and
the user’s preferred computational platform. For
instance, ELEPHANT aims at tracking objects within
large 4D movies. TrackMate, integrated in Fiji [52], is
feature-packed and allows, for instance, to follow
morphological and intensity changes of the tracked
object over time. DL algorithms can also be used for the

object linking step [53]. Despite the growing prevalence
of DL-based strategies in tracking, cleverly crafted
classical algorithms remain state-of-the-art for certain
uses, such as the segmentation and tracking of mito-
chondria [54]. Finally, an integral aspect of automated
tracking is verifying the performance of the chosen
method for a specific dataset, for which several metrics
have been developed to score tracking quality [55e57].
These metrics can also guide the optimization of
tracking parameters, ensuring the most accurate and
useful data extraction from live imaging data [48].

Yet tracking is not always necessary. Segmentation alone
can detect events within video data and yield valuable
biological insights (i.e., [58]). While most DL-based
segmentation methods for video microscopy are super-
vised, which requires the creation of a manually labeled
training dataset, self-supervised methods also exist. One
notable example is Time Arrow Prediction [59],
designed to detect time-asymmetric biological pro-
cesses such as cell division from microscopy videos.

In some conditions, tracking is insufficient. For instance,
when studying changes within an object over time. One
solution is to use an analysis window strategy, which
divides the object into distinct areas for individual
assessment [60]. However, this method faces challenges
when the tracked objects undergo large deformations
during the video (such as shape changes during cell
migration) [61]. In this case, nonlinear image registra-
tion can be used to align the object outline and interior
in each frame, facilitating the spatiotemporal analysis of
processes within the object [61].
Reducing the complexity of live imaging
data via projections
Quantitative analysis of multi-dimensional live imaging
datasets can be complex. It can be greatly simplified by
reducing the video dimensions using projections (such
Extracting temporal information from live imaging data.
(a) Widefield fluorescence microscopy was used to image breast cancer cells
The cytoplasm was segmented using a custom CellPose model [83], and cell
area over time were plotted using PlotTwist [70]—scale bar: 50 mm.
(b) Lifeact-RFP-expressing cancer cells were recorded using a spinning disk
using a time projection (purple to white) and a kymograph along a defined lin
(c) Cancer cell spheroids were imaged at low resolution using an incubator m
fication of the spheroids, as well as the visualization of the phenotypic space,
size, and movement (figure panel adapted from Ref. [66], only the font size a
(d) Self-driving microscopy provides real-time feedback during image acquisi
settings and acquisition parameters, optimizing data collection.

www.sciencedirect.com
as time projection, Figure 4b) or creating spatiotemporal
maps (such as kymographs, Figure 4b), which capture
dynamic changes in single images. DL algorithms such
as the 4SM model and KymoButler can automate
creating and analyzing spatiotemporal maps in large
datasets [62,63]. Projections can also be applied to
complex datasets, such as light-sheet movies of cancer
cells migrating in 3D. For instance, u-Unwrap3D can

remap arbitrarily complex 3D cell surfaces into equiva-
lent lower-dimensional representations. This surface-
guided projection strategy allows the tracking of
segmented surface motifs and associated fluorescent
signals in 2D [64].
Time series analysis
Once numbers are extracted from the video, additional

steps often come into play for meaningful analysis and
comparison, especially when a simple time series
average is insufficient. For instance, time series
normalization becomes crucial when following intensity
changes over time in single cells. As another example,
Granger-causal inference can be used to compare time
series and infer causeeeffect relations between fluctu-
ating protein intensity recordings [65]. When dealing
with high-dimensionality data, clustering, principal
components, and t-SNE analyses can significantly assist
in the unbiased discovery of rare phenotypes (Figure 4c,
[66e68]). Recent advancements include tools like

CellPhe and Traject3D, designed to automate cell
phenotyping across different imaging modalities
[66,67]. In this context, DL algorithms can potentially
enhance time series analysis even further [69].

When analyzing time series, online tools like PlotTwist
[70] offer a user-friendly platform for straightforward
needs. Multiple Python and R toolboxes such as sktime
[71] are available for more complex analyses. These
packages provide a wide range of methods for time series
analysis. Regardless of the chosen approach, quality

control is fundamental for time series analysis to ensure
result reproducibility, which often relies on standardized
procedures combined with batch correction [72].
Self-driving microscopy
By combining on-the-fly image analysis with automated
microscope control, self-driving microscopy software are
expressing a GFP-tagged ERK-reporter (dataset described in Ref. [48]).
movements were tracked with CellPose in TrackMate [48]. Changes in cell

confocal microscope. Dynamic changes are visualized in a single image
e—scale bar: 50 mm.
icroscope. After segmentation and tracking, the phenotypic state classi-
was enabled by a data-driven time-series analysis focusing on cell shape,
nd image sizes were changed in respect to the original figure).
tion. Analyzed on the fly, the acquired data enables adjusting microscope

Current Opinion in Cell Biology 2023, 85:102271
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revolutionizing how we perform live cell imaging ex-
periments [73e76]. For instance, it allows for effortless
transitions from low to high-magnification imaging
during time-lapse acquisition [74] or modifying imaging
rates on the fly, capturing biological events in remark-
able detail [76]. The technology also enables modality
switching, such as brightfield to fluorescence or wide-
field to SR [73,74], presenting unmatched adaptability

in live cell imaging. Another significant feature is the
ability to control optogenetic stimulation autonomously
[75]. The focus on user-defined pertinent events miti-
gates phototoxicity and photobleaching, safeguarding
sample health while optimizing efficiency by reducing
unnecessary imaging. Furthermore, it can capture
elusive, transient events that could be overlooked by
traditional methods, thereby heightening the efficacy of
live cell imaging experiments (Figure 4d).

As a burgeoning field, self-driving microscopy holds

considerable potential, particularly when coupled with
DL’s capacity to leverage imaging data and our ability to
execute complex computations in real time. The
cornerstone of self-driving microscopes lies in open-
source microscopy control software, which enables
adaptive control schemes and event detection.
Pioneering platforms such as Micro-Manager [77e79],
Pycro-Manager [80] or AutoScanJ [81] are at the fore-
front, driving these technological advancements and
redefining the landscape of live imaging.
Choosing an image analysis tool
In the rapidly evolving landscape of image analysis tools
[82], the choice of approach is strongly influenced by
the specific sample being imaged. With a myriad of DL
networks, models, and software available, there isn’t a
universally optimal tool; instead, the selection depends

on the sample imaged, the type of data collected, and
the data that needs to be extracted from the video. Tool
selection is also influenced by the user’s familiarity with
different interfaces and proficiency in coding languages.

Training DL models generally demands significant
computational resources and often necessitates coding
and computational proficiency. Several tools, such as
ZeroCostDL4Mic, Cellpose 2.0, or DeepCell Kiosk,
have made DL training and deployment for bioimage
analysis more accessible [19,83e85]. In addition,

ongoing initiatives facilitate sharing and re-using trained
DL models by creating model zoos [83,84,86e89].
While DL approaches generally outperform traditional
image processing techniques, it is essential to remember
that the latter may be more appropriate or faster
to implement.

When using DL, users should craft their training dataset
carefully and, in particular, ensure that their sample
Current Opinion in Cell Biology 2023, 85:102271
heterogeneity is well represented in the training data-
set. We also recommend that users take the time to
carefully and quantitatively validate their image analysis
pipeline. Additionally, DL models should also be care-
fully validated, and their use (including the training
datasets) should be reported appropriately in publica-
tions (see Refs. [9,90]).
Future perspectives
The last few years have seen an explosion in image
analysis software, greatly empowering live cell imaging
acquisition and analysis. However, tools specifically
designed for video analysis, which capitalize on the

temporal coherence of live microscopy datasets, have
been comparatively scarce. We expect the future will
bring software that fully harnesses the dynamic dimen-
sion of microscopy videos.

We are especially excited about ongoing developments,
including the rise of large segmentation models, such as
Segment-Anything [91] and Track-Anything [92], which
will facilitate the analysis of microscopy videos. In
addition, large language models, such as ChatGPT or
Github Copilot, reshape how we develop image analysis

pipelines. An exciting development in this context is
using natural language to control image analysis software
directly, as demonstrated by the Napari plugin Omega
[13,93]. These technological strides hint at a not-too-
distant future where integrating these tools with self-
driving microscopy software will create more interac-
tive and user-friendly self-driving microscopes.
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article is particularly relevant for researchers interested in using DL for
denoising microscopy videos.

16. Laine RF, Jacquemet G, Krull A: Imaging in focus: an intro-
duction to denoising bioimages in the era of deep learning.
Int J Biochem Cell Biol 2021, 140, 106077.

17. Weigert M, Schmidt U, Boothe T, Müller A, Dibrov A, Jain A,
Wilhelm B, Schmidt D, Broaddus C, Culley S, et al.: Content-
aware image restoration: pushing the limits of fluorescence
microscopy. Nat Methods 2018, 15:1090–1097.

18
*
. Chen J, Sasaki H, Lai H, Su Y, Liu J, Wu Y, Zhovmer A,

Combs CA, Rey-Suarez I, Chang H-Y, et al.: Three-dimensional
residual channel attention networks denoise and sharpen
fluorescence microscopy image volumes. Nat Methods 2021,
18:678–687.
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to-noise ratio (SNR) ground truth images to simulate low SNR condi-
tions. This approach greatly simplifies the generation of a paired su-
pervised dataset by artificially generating high-quality training data.
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The article introduces the Richardson–Lucy Network (RLN), a novel
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data, offering fewer artifacts, better generalizability, and requiring less
computing time than alternative methods. RLN addresses the chal-
lenges of parameter tuning and generalizability associated with deep
learning methods. It achieves this by combining the interpretability of
traditional model-based algorithms with the powerful learning ability of
DL networks.
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rationalized deep learning (rDL) model for structured illumination mi-
croscopy and lattice light sheet microscopy that incorporates prior
knowledge of illumination patterns, significantly enhancing the quality
of the reconstructed images. For researchers interested in using deep
learning to study live cell imaging, this article provides valuable insights
into the potential of DL models in enhancing image reconstruction.
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mizes the processing of fluctuation-based super-resolution microscopy
datasets. To enhance the quality of the reconstructions, eSRRF em-
ploys automated, data-driven parameter optimizations. The authors
showcase the superior fidelity of images reconstructed with eSRRF,
underscoring its versatility and user-friendly application across various
microscopy techniques and biological systems. Furthermore, the au-
thors have expanded eSRRF’s capabilities to 3D super-resolution mi-
croscopy by integrating it with multi-focus microscopy, thereby
achieving volumetric super-resolution imaging of live cells at an
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The article introduces a DL-based method to enhance the resolution of
microscopy images. The authors present a super-resolution network
capable of transforming a single diffraction-limited image into a super-
resolution image, achieving up to a tenfold improvement in resolution.
This innovative approach facilitates high-precision live-cell imaging,
achieving spatiotemporal resolutions of 30 nm and 10 ms. This
advancement allows for extended observation of intricate subcellular
dynamics, including the interactions between mitochondria and the
endoplasmic reticulum, vesicle transport along microtubules, and en-
dosome fusion and fission processes. This work underscores the
transformative potential of deep learning in live cell imaging.
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The article introduces the CAFI framework composed of two DL
models Zooming SlowMo (ZS) and Depth-Aware Video Frame Inter-
polation (DAIN). CAFI can accurately predict images between image
pairs, therefore, enhancing the temporal resolution or microscopy
video. The authors demonstrate that CAFI predictions can understand
the motion context of biological structures, outperforming standard
interpolation methods on six different datasets. The authors make both
DAIN and ZS, as well as the training and testing data, available for use
by the wider community via the ZeroCostDL4Mic platform.
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rescence), that predicts fluorescence labels based on label-free
refractive index measurements (digital holographic imaging). This
approach can potentially be used across various cell types without
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GitHub, along with the source code, example datasets, and step-by-
step interactive tutorials.
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* *
. Ershov D, Phan M-S, Pylvänäinen JW, Rigaud SU, Le Blanc L,

Charles-Orszag A, Conway JRW, Laine RF, Roy NH, Bonazzi D,
et al.: TrackMate 7: integrating state-of-the-art segmentation
algorithms into tracking pipelines. Nat Methods 2022, 19:
829–832.

This article presents TrackMate 7, a tool that combines machine
learning and DL-based image segmentation with multiple object-
tracking algorithms. Notably, TrackMate 7 includes a batcher for
processing multiple datasets and a helper module that assists users in
identifying the best possible tracking parameters using ground truth
data. TrackMate 7 is open-source and can be accessed directly in the
Fiji software.

49
*
. Padovani F, Mairhörmann B, Falter-Braun P, Lengefeld J,

Schmoller KM: Segmentation, tracking and cell cycle analysis
of live-cell imaging data with Cell-ACDC. BMC Biol 2022, 20:
174.

This article introduces Cell-ACDC, an open-source, user-friendly GUI-
based framework for segmentation, tracking, and cell cycle annota-
tions. Cell-ACDC incorporates state-of-the-art deep learning models for
single-cell segmentation of mammalian and yeast cells alongside cell
tracking methods. Notably, it now includes the state-of-the-art tracking
algorithm TAPIR, demonstrating its rapid development and adaptability.
The tool also offers an intuitive, semi-automated workflow for cell cycle
annotation of single cells. The open-source and modularized nature of
Cell-ACDC allows for easy integration of new deep learning-based and
traditional methods for cell segmentation, tracking, and downstream
image analysis

50. Ulicna K, Vallardi G, Charras G, Lowe AR: Automated deep
lineage tree analysis using a bayesian single cell tracking
approach. Front Comput Sci 2021:3.

51
* *
. Sugawara K, Çevrim Ç, Averof M: Tracking cell lineages in 3D

by incremental deep learning. Elife 2022, 11, e69380.
This article presents ELEPHANT, an interactive platform for 3D cell
tracking that uses an incremental approach to DL. ELEPHANT in-
tegrates cell track annotation, deep learning, prediction, and proof-
reading, allowing users to start from a few annotated nuclei and
improve tracking performance rapidly through successive
prediction–validation cycles. ELEPHANT has been tested against
state-of-the-art methods and has proven to yield accurate, fully-
validated cell lineages with a modest investment in time and effort.
ELEPHANT provides a user-friendly interface that requires only a few
annotations to start, making it accessible even to non-experts. The
incremental learning approach allows for rapid improvements in
tracking performance, which can be particularly beneficial in studies
involving large-scale tracking or long-term imaging.

52. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M,
Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al.:
Fiji: an open-source platform for biological-image analysis.
Nat Methods 2012, 9:676–682.

53
*
. Pineda J, Midtvedt B, Bachimanchi H, Noé S, Midtvedt D,

Volpe G, Manzo C: Geometric deep learning reveals the
spatiotemporal features of microscopic motion. Nat Mach
Intell 2023, 5:71–82.

This article presents a geometric DL framework for automated trajec-
tory linking and dynamical property estimation in biological experi-
ments. The framework, named MAGIK (Motion Analysis through GNN
Inductive Knowledge), can handle complex biological scenarios, such
as high object density, fusion or splitting events, random and hetero-
geneous motion, and shape-changing objects. It uses graph neural
networks (GNNs) to model the system’s motion and interactions,
providing accurate estimation of dynamical properties from time-lapse
microscopy. For researchers interested in using deep learning to study
live cell imaging, this article offers a novel perspective on tackling
tracking and motion characterization using geometric DL.

54. Lefebvre AEYT, Ma D, Kessenbrock K, Lawson DA, Digman MA:
Automated segmentation and tracking of mitochondria in
live-cell time-lapse images. Nat Methods 2021, 18:1091–1102.

55. Ma�ska M, Ulman V, Delgado-Rodriguez P, Gómez-de-Mariscal E,
Ne�casová T, Guerrero Peña FA, Ren TI, Meyerowitz EM,
Scherr T, Löffler K, et al.: The cell tracking challenge: 10 years
of objective benchmarking. Nat Methods 2023, https://doi.org/
10.1038/s41592-023-01879-y.

56. Ulman V, Ma�ska M, Magnusson KEG, Ronneberger O,
Haubold C, Harder N, Matula P, Matula P, Svoboda D,
Radojevic M, et al.: An objective comparison of cell-tracking
algorithms. Nat Methods 2017, 14:1141–1152.
www.sciencedirect.com
57. Chenouard N, Smal I, de Chaumont F, Ma�ska M, Sbalzarini IF,
Gong Y, Cardinale J, Carthel C, Coraluppi S, Winter M, et al.:
Objective comparison of particle tracking methods. Nat
Methods 2014, 11:281–289.

58. Villars A, Letort G, Valon L, Levayer R: DeXtrusion: automatic
recognition of epithelial cell extrusion through machine
learning in vivo. Development 2023, 150. dev201747.

59
*
. Gallusser B, Stieber M, Weigert M: Self-supervised dense rep-

resentation learning for live-cell microscopy with time arrow pre-
diction. 2023, https://doi.org/10.48550/arXiv.2305.05511.

This article presents a new DL self-supervised method for analyzing
live-cell microscopy videos. The method, called Time Arrow Prediction
(TAP), predicts the correct order of time-flipped image regions via a
single-image feature extractor and a subsequent time arrow prediction
head. The resulting dense representations capture inherently time-
asymmetric biological processes such as cell divisions on a pixel
level. The authors demonstrate the utility of these representations on
several live-cell microscopy datasets for the detection and segmenta-
tion of dividing cells, as well as for cell state classification. The method
outperforms supervised methods, particularly when only limited ground
truth annotations are available, which is commonly the case in practice.

60. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O, Nalbant P,
Abell A, Johnson GL, Hahn KM, Danuser G: Coordination of
Rho GTPase activities during cell protrusion. Nature 2009,
461:99–103.

61
*
. Jiang X, Isogai T, Chi J, Danuser G: Fine-grained, nonlinear

registration of live cell movies reveals spatiotemporal orga-
nization of diffuse molecular processes. PLoS Comput Biol
2022, 18, e1009667.

This article presents a novel method for analyzing local subcellular
processes across the entire cell. The authors have developed a tech-
nique that aligns microscopy time-lapse sequences for every frame,
allowing for a detailed spatiotemporal analysis of molecular processes
in the whole cell, even if it changes its shape during the movie. The
authors also provide a Matlab code for implementing the proposed
registration method. This method particularly benefits those interested
in analyzing live cell imaging data. It provides a framework for
extracting information to explore functional interactions between cell
morphodynamics, protein distributions, and signaling in cells under-
going shape changes.

62. Jakobs MA, Dimitracopoulos A, Franze K: KymoButler, a deep
learning software for automated kymograph analysis. Elife
2019, 8, e42288.

63. Kamran SA, Hossain KF, Moghnieh H, Riar S, Bartlett A,
Tavakkoli A, Sanders KM, Baker SA: New open-source soft-
ware for subcellular segmentation and analysis of spatio-
temporal fluorescence signals using deep learning. iScience
2022, 25.

64
* *
. Zhou FY, Weems A, Gihana GM, Chen B, Chang B-J, Driscoll M,

Danuser G: Surface-guided computing to analyze subcellular
morphology and membrane-associated signals in 3D. 2023,
https://doi.org/10.1101/2023.04.12.536640.

This article introduces a new framework called u-Unwrap3D. This tool
remaps complex 3D cell surfaces and membrane-associated signals
into lower dimensional representations. Using these lower dimensions
makes it much easier to analyze the data. Importantly, the mappings
are bidirectional, allowing the application of image processing opera-
tions in the data representation best suited for the task. As an example,
the authors demonstrate that u-Unwrap3D is particularly useful for
tracking segmented surface motifs in 2D, such as quantifying the
recruitment of Septin polymers to blebbing events, quantifying actin
enrichment in peripheral ruffles, and measuring the speed of ruffle
movement along complex cell surfaces. This tool offers a unique
approach to analyzing cell biological parameters on unrestricted 3D
surface geometries, making it a valuable strategy for studying multi-
dimensional video.

65
*
. Noh J, Isogai T, Chi J, Bhatt K, Danuser G: Granger-causal

inference of the lamellipodial actin regulator hierarchy by live
cell imaging without perturbation. Cell Syst 2022, 13:
471–487.e8.

This article presents a perturbation-free approach to understanding the
regulatory network of lamellipodial actin structures. The authors intro-
duce the use of Granger-causal inference applied to constitutive image
fluctuations, which serve as indicators of actin regulator recruitment
and activity. This method identifies distinct zones of actin regulator
activation and their causal effects on filament assembly. The approach
Current Opinion in Cell Biology 2023, 85:102271
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also helps to distinguish between actin-dependent and actin-
independent regulator roles in controlling edge motion. The authors
propose that edge motion is driven by assembling two independently
operating actin filament systems. This strategy offers a unique, non-
invasive way to analyze the complex cellular regulatory systems from
live cell imaging data. Importantly, it allows studying individual protein
functions without needing experimental intervention, overcoming a
central challenge in cell biological inquiry.

66
* *
. Freckmann EC, Sandilands E, Cumming E, Neilson M, Román-

Fernández A, Nikolatou K, Nacke M, Lannagan TRM, Hedley A,
Strachan D, et al.: Traject3d allows label-free identification of
distinct co-occurring phenotypes within 3D culture by live
imaging. Nat Commun 2022, 13:5317.

The article presents Traject3d, an innovative image analysis pipeline
that facilitates the detection of co-existing heterogeneous phenotypes
within 3D cultures. Traject3d can identify distinct subtypes within these
heterogeneous populations using label-free, multi-day time-lapse im-
aging. Unlike traditional methods that rely on static snapshots,
Traject3d leverages live imaging to identify alternative phenotypes. This
approach enables the unbiased detection of rare phenotypes that may
arise through unexpected or low-probability state transitions. For re-
searchers exploring the regulation of cellular heterogeneity and its
contribution to biological systems, Traject3d offers a valuable tool,
enhancing the depth and accuracy of live cell imaging analysis.

67
*
. Wiggins L, Lord A, Murphy KL, Lacy SE, O’Toole PJ,

Brackenbury WJ, Wilson J: The CellPhe toolkit for cell pheno-
typing using time-lapse imaging and pattern recognition. Nat
Commun 2023, 14:1854.

This article introduces a new toolkit called CellPhe, designed to char-
acterize cellular phenotypes within time-lapse videos. CellPhe uses the
output of segmentation and tracking software to provide an extensive
list of features that describe changes in the cells’ appearance and
behavior over time. These features include cell morphology, texture,
and dynamics. CellPhe can also recognize and remove erroneous cell
boundaries induced by inaccurate segmentation and tracking. The
toolkit is particularly useful for live cell imaging as it allows for precise
quantification of cell morphology and motility and monitors major
cellular events such as mitosis and apoptosis.

68. Dao D, Fraser AN, Hung J, Ljosa V, Singh S, Carpenter AE:
CellProfiler Analyst: interactive data exploration, analysis
and classification of large biological image sets. Bioinfor-
matics 2016, 32:3210–3212.

69. Schneider S, Lee JH, Mathis MW: Learnable latent embeddings
for joint behavioural and neural analysis. Nature 2023, 617:
360–368.

70. Goedhart J, PlotTwist: A web app for plotting and annotating
continuous data. PLoS Biol 2020, 18, e3000581.

71. Löning M, Bagnall A, Ganesh S, Kazakov V, Lines J, Király FJ:
Sktime: a unified interface for machine learning with time series.
2019, https://doi.org/10.48550/arXiv.1909.07872.

72. Hu J, Serra-Picamal X, Bakker G-J, Van Troys M, Winograd-
Katz S, Ege N, Gong X, Didan Y, Grosheva I, Polansky O, et al.:
Multisite assessment of reproducibility in high-content cell
migration imaging data. Mol Syst Biol 2023, 19, e11490.

73
*
. Alvelid J, Damenti M, Sgattoni C, Testa I: Event-triggered STED

imaging. Nat Methods 2022, 19:1268–1275.
This article presents event-triggered STED (etSTED), a novel method
that combines fast widefield imaging with high-resolution STED imag-
ing. The method uses a real-time analysis pipeline to detect subcellular
events such as biosensing, protein recruitment, or vesicle trafficking.
Upon detection, it swiftly transitions from widefield to STED imaging
within a 40 ms window, enabling rapid 2D and 3D STED nanoscopy
acquisitions at the event site. A significant advantage of etSTED is its
potential to reduce phototoxicity, as it only triggers high-resolution im-
aging upon event detection, minimizing overall light exposure. This
makes etSTED a valuable, cell-friendly tool for researchers studying
cellular processes at high spatial resolution.

74
*
. André O, Kumra Ahnlide J, Norlin N, Swaminathan V,

Nordenfelt P: Data-driven microscopy allows for automated
context-specific acquisition of high-fidelity image data. Cell
Rep Methods 2023, 3, 100419.

The article presents data-driven microscopy (DDM), an innovative
image acquisition and analysis framework that enables dynamically
switching between imaging magnifications. This unique feature allows
DDM to image the entire cell population at a lower resolution for a
broad overview and then automatically shift to a higher resolution when
Current Opinion in Cell Biology 2023, 85:102271
a phenotype of interest is detected. DDM’s real-time, population-wide
object characterization facilitates this dynamic, context-specific imag-
ing approach, enabling high-fidelity imaging of relevant phenotypes.
The authors demonstrate DDM’s utility in high-content screening and
live adaptive microscopy for cell migration and infection studies,
capturing common and rare events with remarkable precision and
resolution. By reducing human bias, increasing reproducibility, and
contextualizing single-cell characteristics within the broader sample
population, DDM enhances overall data fidelity. Thus, DDM is a valu-
able tool for researchers seeking to capture high-resolution events in
live cell imaging.

75
*
. Fox ZR, Fletcher S, Fraisse A, Aditya C, Sosa-Carrillo S, Petit J,

Gilles S, Bertaux F, Ruess J, Batt G: Enabling reactive micro-
scopy with MicroMator. Nat Commun 2022, 13:2199.

The article introduces MicroMator, a software specifically designed for
reactive microscopy experiments. This tool enables real-time adapta-
tions during live cell imaging experiments, such as tracking moving
objects and adjusting the microscope accordingly. MicroMator’s
standout feature is its ability to structure microscopy experiments using
a primary image acquisition loop as the experiment’s backbone,
supplemented by event creation functions for reactivity. These events,
composed of Triggers and Effects, can perform various tasks, including
modifying microscope configurations, illuminating specific patterns in
the field of view, operating a microfluidic pump, initiating optimization
routines, and even sending alerts via instant messaging platforms like
Discord.

76
*
. Mahecic D, Stepp WL, Zhang C, Griffié J, Weigert M, Manley S:

Event-driven acquisition for content-enriched microscopy.
Nat Methods 2022, 19:1262–1267.

The article presents an innovative approach to super-resolution im-
aging, leveraging DL to identify specific biological events. This DL-
based recognition triggers a transition between slow and fast super-
resolution imaging, enriching the data capture of significant events
with enhanced spatiotemporal resolution. This method is particularly
pertinent for those engaged in live cell imaging, as it substantially im-
proves the quality and efficiency of imaging. It enables the extraction of
more intricate and meaningful data from biological events. Conven-
tional methods often necessitate continuous high-speed imaging,
which can induce phototoxicity and rapid photobleaching. These fac-
tors limit the duration of imaging and potentially harm the cells. How-
ever, this novel approach mitigates these limitations by employing high-
speed imaging only when required, thereby reducing phototoxicity and
prolonging the imaging duration.

77. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD,
Stuurman N: Advanced methods of microscope control using
mManager software. J Biol Methods 2014, 1:e10.

78. Pinkard H, Stuurman N, Corbin K, Vale R, Krummel MF: Micro-
Magellan: open-source, sample-adaptive, acquisition soft-
ware for optical microscopy. Nat Methods 2016, 13:807–809.

79. Almada P, Pereira PM, Culley S, Caillol G, Boroni-Rueda F,
Dix CL, Charras G, Baum B, Laine RF, Leterrier C, et al.: Auto-
mating multimodal microscopy with NanoJ-Fluidics. Nat
Commun 2019, 10:1223.

80. Pinkard H, Stuurman N, Ivanov IE, Anthony NM, Ouyang W, Li B,
Yang B, Tsuchida MA, Chhun B, Zhang G, et al.: Pycro-Man-
ager: open-source software for customized and reproducible
microscope control. Nat Methods 2021, 18:226–228.

81. Tosi S, Lladó A, Bardia L, Rebollo E, Godo A, Stockinger P,
Colombelli J: AutoScanJ: a suite of ImageJ scripts for intelli-
gent microscopy. Front Bioinforma 2021:1.

82. Haase R, Fazeli E, Legland D, Doube M, Culley S, Belevich I,
Jokitalo E, Schorb M, Klemm A, Tischer C: A Hitchhiker’s guide
through the bio-image analysis software universe. FEBS Lett
2022, 596:2472–2485.

83
* *
. Pachitariu M, Stringer C: Cellpose 2.0: how to train your own

model. Nat Methods 2022, 19:1634–1641.
This article introduces Cellpose 2.0, an upgrade to the original Cell-
pose, a tool designed for cell segmentation in biological images. The
new version improves upon the original by offering pretrained models
that can be very easily fine-tuned using a human-in-the-loop training
pipeline. Cellpose 2.0 allows the creation of custom DL segmentation
models with very little new training data enabling the generation of
state-of-the-art models in 1–2 h. For researchers interested in using
DL for live cell imaging, this article provides valuable insights into how
to train your own model using Cellpose 2.0. The human-in-the-loop
approach discussed in the article can significantly reduce the time
www.sciencedirect.com
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