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Abstract 

Generative models, such as diffusion models, have made significant advancements in recent years, 

enabling the synthesis of high-quality realistic data across various domains. Here, we explore the 

adaptation and training of a diffusion model on super-resolution microscopy images from publicly 

available databases. We show that the generated images resemble experimental images, and that the 

generation process does not memorize existing images from the training set. Additionally, we compare 

the performance of a deep learning-based deconvolution method trained using our generated high-

resolution data versus training using high-resolution data acquired by mathematical modeling of the 

sample. We obtain superior reconstruction quality in terms of spatial resolution using a small real 

training dataset, showing the potential of accurate virtual image generation to overcome the limitations 

of collecting and annotating image data for training. Finally, we make our pipeline publicly available, 

runnable online, and user-friendly to enable researchers to generate their own synthetic microscopy 

data. This work demonstrates the potential contribution of generative diffusion models for microscopy 

tasks and paves the way for their future application in this field. 

Introduction 

Deep learning algorithms have been extensively used in the past decade to solve various microscopy 

challenges
1–7

. These algorithms outperform traditional computer vision methods in terms of 

reconstruction quality, analysis time, and classification, among many others. However, deep learning 

solutions are hungry for data. To train a model, one should typically acquire and annotate hundreds or 

even thousands of images manually, a highly time and resource consuming process. An alternative 

approach is to produce synthetic data based on mathematical models that describe the structure of the 

biological specimen
1,3,7–9

. Yet, tuning the data generation parameters is a cumbersome process that leads 

to non-realistic features in the synthetic images due to parameter estimation errors and model 

inaccuracies, which is critical to train highly generalizable and accurate models. 

Recently, the field of generative models has seen a significant surge in terms of both development and 

application
10–13

. Generative models have moved far beyond their initial application in producing artificial 

images and are now being used to create synthetic datasets that can effectively mimic real-world data in 

diverse domains
14

. Two major contributors to this advancement have been Denoising Diffusion 

Probabilistic Models (DDPM)
10

 and Denoising Diffusion Implicit Models (DDIM)
13

. DDPM and DDIM offer 



a dynamic approach for the generation of synthetic data, relying on stochastic processes to create totally 

new images that still capture the inherent image statistics present in the training dataset.  

The capacity of diffusion models to accurately create realistic visual data is profoundly impacting many 

computer vision applications
15

, including microscopic imaging, where overcoming the existing challenges 

to gather high-quality large training datasets is invaluable. Indeed, several studies already incorporate 

diffusion models to microscopy to reconstruct 3D biomolecule structures in Cryo-EM images
16

, predict 

3D cellular structures out of 2D images
17

, or drug molecule design
18

, among others.  

Here, we propose the application of generative diffusion models in the field of super-resolution 

microscopy. First, we show the ability of diffusion models to generate realistic, high-quality, super-

resolution microscopy images of microtubules and mitochondria. Then, we assess the capacity of the 

models to learn the intricate nature of the data domain by validating that the network does not 

memorize images from the training data. Next, we utilize the generated dataset to train a single-image 

super-resolution deep learning model and show superior reconstruction quality compared to the same 

model trained on model-based simulated data. The diffusion model approach proposed here is publicly 

available
19

 on the ZeroCostDL4Mic platform
20

, enabling non-expert researchers to benefit from it. 

Results 

We base our work on a previously reported
21

 diffusion model which we adapt to super-resolution 

microscopy. We trained two diffusion models on different biological samples, microtubules and 

mitochondria, sourced from a publicly available database (ShareLoc.xyz
22–24

).  We split our data into 60% 

and 40% for training and validation of the performance, obtaining a 7:5 training:validation image ratio 

for the microtubule data and a 3:2 training:validation image ratio for the mitochondria data. 

Furthermore, we split each image into patches of 256x256 pixels and transformed them using random 

horizontal flips and rotations of 90, 180, and 270 degrees to augment the training data. The 

augmentation step yielded a total of 2000 training patches for the microtubule data and 800 training 

patches for the mitochondria data. Training details are further specified in the Methods section.  



 

Figure 1: Qualitative comparison of experimental microscopy data versus data generated using our generative

diffusion model. (a) Example synthetic images of microtubules (alpha-tubulin – Alexa647) and mitochondria (TOM

22 – Alexa647) generated by our diffusion model. (b) Example experimental super-resolution images, used as

training data. Scale bars = 2.5 .  

The images generated by our DDPM qualitatively resemble the training data used for the training, as can

be clearly seen in the examples in Figure 1. To validate that our model does not memorize images,

namely, copy existing images from the training set and generate them as network outputs, we calculated

the normalized cross-correlation between every generated image (a total of 50 images), including

rotated and flipped versions of the images, and the augmented patches used for training. The maxima

normalized cross-correlation, calculated between all generated images and the training data, was 0.345

(0.682) for the synthetic microtubule (mitochondria) images. The mean normalized cross-correlation

value was 0.336 (0.631) for the microtubules (mitochondria) images. For comparison, repeating this

process of normalized cross-correlation calculation between experimental images, taken from different

datasets (a total of 10 images), and all other training data, yielded a mean value of 0.372 (0.414) and

max value of 0.483 (0.510) for the microtubule (mitochondria) data. Then, we overlaid the training

images that obtained the highest cross-correlation score with the generated images to verify that our

synthetic images are sufficiently new and different from the training images (Figure 2). 

Notably, the cross-correlation values are similar for experimental microtubule images from another

dataset (imaged in similar conditions) and the microtubule images that were generated by our diffusion

model, showing the expected variability between different and independent datasets. In the case of

mitochondria images, the cross-correlation values were slightly higher than those obtained when

comparing with images from a different experimental dataset (see in-depth analysis in the discussion

section). 
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Figure 2: Diffusion models do not memorize training images. Overlay between each reconstructed image and the

training image with highest resemblance (maximal cross-correlation score). Red marks generated data, green marks

the closest training sample, and yellow marks overlap between the two images. Scale bars = 2.5 . 

Next, we tested the applicability of our generated data to improve deep learning-based methods. We

used our generated data to train an application of Content-Aware Restoration (CARE)
1
, specifically, a

deconvolution method aiming to transform a low-resolution image to a high-resolution image based on

prior knowledge of image-statistics. Notably, obtaining single-image-based super-resolution

algorithmically is yet an unsolved problem in microscopy, with results strongly dependent on the prior

information provided, and is no match to physics based super-resolution microscopy methods (SMLM

STED, SIM, etc.
25–28

). Nevertheless, we use this task to demonstrate the potential of diffusion model-

based data generation in virtual super-resolution microscopy imaging. We trained two CARE models for

each biological sample using 1) synthetic images generated by a mathematical model and 2) images

generated by our diffusion model. During the training stage, we simulated synthetic high-resolution

images either by our model or a mathematical model; next, we obtained low-resolution images by

forward passing the high-resolution images through a model of our optical system (see methods section

for more details). Ultimately, we used these low-resolution – high-resolution pairs to train CARE. 

Visually, the CARE model trained on data generated by the diffusion model yielded a better

reconstruction in comparison to the traditionally trained network (Figures 3, 4). Moreover, we have

analyzed the spatial resolution we obtained in both reconstructions using the Fourier Ring Correlation

(FRC) plug-in for ImageJ
29

. In brief, FRC is a similarity measure that seeks the maximal spatial frequency

in which the reconstructed and ground truth images are similar up to a predefined threshold. The

similarity is quantified by the normalized cross-correlation between the Fourier transforms of both

images inside a torus with increasing radius. A high cross-correlation value within the torus indicates

high similarity between the images, in the corresponding spatial frequency band.  

The mean spatial resolution of the reconstructed images, as quantified by FRC, using a 1/7 threshold
29

when training on microtubule images generated by our diffusion model was 100 nm, while the mean

spatial resolution obtained when training on synthetic microtubules generated via a mathematical mode

was 140 nm.  
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Figure 3: Performance of CARE trained on synthetic microtubule images generated by a mathematical model vs

training on microtubules generated by our diffusion model. (a) Left to right: widefield image, CARE reconstruction

when trained on mathematical simulations, CARE reconstruction when trained on our synthetic data, and ground

truth. Scale bar = 5 . (b) Regions of interest (marked by yellow squares in (a)), yellow arrows mark areas in which

CARE trained on our data outperformed the previous method. (c) Left: overlay between CARE trained on

mathematical simulations (red) and the ground truth (green). Right: overlay between CARE trained on our diffusion

model-based synthetic data (red) and the ground truth (green). Scale bar = 1 . 

Notably, microtubule images can be simulated with relatively high fidelity by a variety of well-established

mathematical models
30

. However, for an arbitrary type of biological specimen, it is not easy to obtain a

simple mathematical model describing its shape and characteristics. Therefore, the most remarkable

feature of diffusion model-based data generation is the ability to generate synthetic data from non-

mathematically defined biological specimen. Additionally, diffusion models might also contribute to the

understanding of biological structures in a data driven manner by interpretation of the generated image

statistics. 

We validate this claim by training our diffusion model on publicly available super-resolution images of

mitochondria
23

 (Figure 4). The spatial resolution obtained by CARE trained on our generated

mitochondria was 110 nm. Unlike for microtubules, there is no available mathematical model to

generate mitochondria images. Therefore, training CARE traditionally would require obtaining enough

extended super-resolution images.  
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Figure 4: Performance of CARE trained on mitochondria generated by our diffusion model. (a) Left to right

widefield image, CARE reconstruction when trained on our synthetic data, and ground truth. Scale bar = 5 . (b)

Region of interest; yellow arrow marks a subtle feature not visible in widefield imaging, which is made visible in our

reconstruction. Scale bar = 2 . 

Discussion 

In this work, we demonstrate the potential of diffusion models to generate large super-resolution

microscopy datasets by relying on a relatively small number of super-resolution images. Given only 7

microtubule images we managed to generate realistic microtubule images that looked different from the

original training data, while resembling similar experimental data distribution. Notably, when training on

yet a smaller dataset, i.e., 3 mitochondria images, some parts of the image were memorized, yielding

slightly higher cross-correlation values when using the generated images than the values obtained when

using mitochondria images from a different dataset. This observation is in par with existing work in this

field
31,32

, implying that larger training sets prevent memorization and increase the uniqueness of the

generated data. Therefore, we suggest using quantitative sanity checks (such as the cross-correlation

metric) on the generated data as a tool to evaluate whether enough images were used to train the

diffusion model. Additionally, when choosing the number of images for training, one should also take

into consideration the data complexity and the size of the field-of-view of each image. 

Creating synthetic images of biological data that are highly realistic and representative of the origina

data has important implications. For example, diffusion models enable efficient generation of super-

resolution datasets that could be transformed to low-resolution observations by forward passing

through an optical model of the imaging system; then, one may perform supervised model training
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without the need for extensive experimental data acquisition, often a limiting factor due to the 

impractical duration of the acquisition process. The contribution of our method is particularly relevant 

for the general case where no simple mathematical model is available for synthetic image generation.  

Moreover, the ability to learn the complexity of biological structures and reproduce them to create 

realistic simulated images is key to identifying and interpreting biological phenomena and reinforcing 

data-driven discoverability. Our experiments have shown that diffusion models can be of great value in 

this area; these models have the ability to produce synthetic images that are of high quality and closely 

resemble real microscopy data, even when dealing with complex structures such as microtubule 

networks. To obtain accurate and highly generalizable models, it is essential to train deep learning 

models with the most realistic and extensive data possible, covering most of the natural experimental 

domain. These highly effective models, also known as foundation models, require massive amounts of 

image data to be trained effectively, which could be partially alleviated by smart and accurate data 

generation. 

While the task chosen in this work to demonstrate the potential of the approach is single-image super-

resolution, the applicability of diffusion model-based image generation for microscopy is naturally much 

broader. Numerous potential applications exist, including denoising, multi-image super-resolution, cross-

modality imaging, live-cell dynamic imaging, and more. On the other side, quantitative evaluation of 

biological image data generation in the lack of annotated images is still an open question in the field that 

requires further work and consensus.  

We share an easy-to-use notebook via the ZeroCostDL4Mic
20

 platform to enable researchers to replicate 

our pipeline and harness diffusion model capabilities. We also distribute the pretrained models that 

allow the generation of data similar to the data presented in this work. Of note, training diffusion models 

is time consuming due to the large number of stochastic operations involved in the learning process. 

In light of the encouraging results obtained from this study, future research should continue to focus on 

further optimizing and evaluating diffusion models for generating more types of synthetic microscopy 

data and on finding the applications where these capabilities are most impactful. Furthermore, due to 

the capacity of diffusion models to create virtual representations of nanoscale cellular structure, they 

can potentially predict prospective multi-structural spatial relationships that will guide observations and 

discovery in the field of microscopy. The emergence of generative models for microscopy represents an 

exciting phase for bio-medical research and holds promising potential for advancements in the near 

future.  
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Methods 

Optical model for low-resolution image generation 

To train CARE on low-resolution – high-resolution image pairs, we used high-resolution data and passed 

it through a model of our optical system to obtain low-resolution images. In this work, we use a simple 

model to simulate a 2D low-resolution image based on a 2D high-resolution image. Let the imaged 

structure be depicted by ���, �� and let ���, ��, the point spread function (PSF) of the optical system, 

be modeled as a 2D Gaussian: 

���, �� � 	 
 �
� 

�������

���
�  � 

�������

���
�

 

Where 	 is the amplitude of the PSF, �	 , �	 are the position of the emitter, and �� � �� � � represents 

the PSF width. 

The low-resolution image formed at the camera is described by the convolution of the imaged structure 

with the system’s PSF equation: 

��, �� � �����, �� � ���, ��� � ���, �� 

Where * indicates a convolution operator, ���, �� indicates a Poisson distribution of the emitted number 

of photons, and ���, �� indicates a Gaussian noise simulating the camera read noise. 

Diffusion model architecture and training details 

We have adopted the network architecture presented by Nichol, et al
21

 We used a single residual 

network (ResNet) block and we changed the input and output layers of the model to fit monochromatic 

data. To decrease the network size, we also changed the channel multiplication between different layers 

of the ResNet, namely, instead of (1, 1, 2, 2, 4, 4) multiplication we used (1, 1, 2, 2, 2, 2) multiplication, 

where the initial channel number is 64. Additionally, we changed the number of diffusion steps to 2000, 

set the batch size to 10, the learning to 1��
, and employed a cosine noise schedule. To train the 

network, we used 7 super-resolution localization lists of microtubule experiments and 3 of mitochondria 

experiments, all publicly available (ShareLoc
22

); then, we generated from each localization list a super-

resolved image scaled by a factor of 4 in comparison to the diffraction limited data, yielding pixel sizes of 

27 nm and 32 nm for the microtubule and mitochondria images, respectively. 

Next, we split the input images to multiple overlapping patches of size 256�256 ������� and augmented 

the patches by flipping and rotating the images horizontally and vertically. The total number of training 

patches we used is 2000 and 800 for the microtubule and mitochondria networks respectively. Finally, 

we trained the generative diffusion model over 80,000 steps for 8 hours on a single NVIDIA 32GB Titan 

RTX GPU. Ultimately, generation of a single super-resolution image depends on the image size, e.g. 30 

seconds for images of size 256�256 pixels
2
. 

 



 

CARE training details 

We obtained super-resolution training data based on: 1) the mathematically simulated data presented in 

CARE paper; 2) the data generated by our trained diffusion model. To generate the low-resolution data 

needed for training CARE network, we followed a similar scheme as described in the CARE paper by 

convolving the super-resolution data with a gaussian microscope PSF model and adding Perlin noise, 

shot noise and gaussian noise. Importantly, we made sure that images generated by the two methods 

described above shared properties such as signal-to-noise ratio, sample size, etc. Finally, we trained the 

CARE network on 5000 synthetic low-resolution-high-resolution image pairs for the microtubule 

reconstruction and 2000 for the mitochondria reconstruction. To maintain a fair comparison between 

CARE trained on our data vs CARE trained on the mathematically generated microtubules, we used the 

same training set size in both cases.  
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