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ABSTRACT
Fluorescencemicroscopy is essential for studying living cells, tissues
and organisms. However, the fluorescent light that switches on
fluorescent molecules also harms the samples, jeopardizing the
validity of results – particularly in techniques such as super-resolution
microscopy, which demands extended illumination. Artificial
intelligence (AI)-enabled software capable of denoising, image
restoration, temporal interpolation or cross-modal style transfer has
great potential to rescue live imaging data and limit photodamage. Yet
we believe the focus should be on maintaining light-induced damage
at levels that preserve natural cell behaviour. In this Opinion piece, we
argue that a shift in role for AIs is needed –AI should be used to extract
rich insights from gentle imaging rather than recover compromised data
from harsh illumination. Although AI can enhance imaging, our ultimate
goal should be to uncover biological truths, not just retrieve data. It is
essential to prioritize minimizing photodamage over merely pushing
technical limits. Our approach is aimed towards gentle acquisition and
observation of undisturbed living systems, aligning with the essence of
live-cell fluorescence microscopy.
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Introduction
The ability to comprehend biological events is inherently linked to
the capacity for non-invasive observation. Fluorescence microscopy
has been instrumental in facilitating these analyses across a range of
scales (Heimstädt, 1911; Lehmann, 1913; Reichert, 1911). Over the
past two decades, technological advancements, such as light-sheet
microscopy (Dodt et al., 2007; Huisken et al., 2004; Reynaud et al.,
2008; Verveer et al., 2007), structured illumination microscopy
(SIM) (Gustafsson, 2000; Heintzmann and Huser, 2017) and single-
molecule localisation microscopy (SMLM) (Betzig et al., 2006;
Hess et al., 2006; Lelek et al., 2021), have revolutionised
fluorescence light microscopy, enabling us to characterise

biological events from molecular interactions up to larger living
organisms.

Advanced microscopy imaging generally needs high levels of
fluorescence excitation light, which results in phototoxicity or
photodamage. These terms refer to the detrimental impacts of light,
especially when employing photosensitising agents or high-intensity
illumination, and are a key challenge for live microscopy imaging
(see https://focalplane.biologists.com/2021/05/14/phototoxicity-the-
good-the-bad-and-the-quantified/ and Reiche et al., 2022; Tinevez
et al., 2012; Wäldchen et al., 2015). Although toxicity is only an
issue for living systems, photodamage also occurs in non-living
materials and thus, for simplicity, both terms are used here
interchangeably. Sample illumination might also result in
photobleaching, a process characterised by an irreversible loss of a
fluorescent signal attributed to the destruction of the fluorophore.
This is one manifestation of light damage, among other possible
effects. Phototoxicity severely influences the experimental outcomes
by altering biological processes under observation, skewing findings
and impeding consistency (Alghamdi et al., 2021). Therefore, it is
crucial during live-cell microscopy to carefully consider these
factors to prolong the duration of imaging and achieve dependable
research outcomes (Icha et al., 2017; Kiepas et al., 2020; Laissue
et al., 2017; Mubaid and Brown, 2017; Tosheva et al., 2020).

The biological validity of live-cell imaging experiments requires a
precise balance between acquiring high quality data that can be
analysed and maintaining the health of the specimen (depicted in
Fig. 1). Major advancements have been made in both hardware and
software technologies, aiming to reduce light damage of the sample.
Importantly, super-resolution techniques, such as stimulated
emission depletion (STED), achieves nanoscale spatial resolution
by eliminating the diffraction barrier, at the cost of damaging the
sample due to the high illumination intensity required (Hell and
Wichmann, 1994). Reversible saturable optical fluorescence
transition (RESOLFT) overcomes the limitation of STED, that is
the high degree of photobleaching and photodamage of the sample,
as it requiresmuch lower light intensities that are comparable to those
used in confocal microscopy (Hofmann et al., 2005; Ratz et al.,
2015) (Table 1). Hardware innovations, such as lattice light sheet
(LLS) microscopy (Chen et al., 2014) and Airyscan microscopy
(Huff, 2015) are notable examples of gentler acquisition approaches
for the sample health that still accomplish high resolutions (Table 1).
Additionally, computational advancements such as fluctuation-
based super resolution microscopy offer promising solutions to
photodamage (Dertinger et al., 2009; Gustafsson et al., 2016; Laine
et al., 2023). A recent study has shown that a two-colour illumination
scheme combining near-infrared illumination with fluorescence
excitation has the capacity to limit the phototoxicity caused by light-
induced interactions with fluorescent proteins (Ludvikova et al.,
2023). These technological breakthroughs have the potential to
optimise observation accuracy while mitigating photodamage.
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In parallel, artificial intelligence (AI), specifically deep learning,
can significantly improve imaging information and analysis in low-
illumination scenarios by considerably enhancing image quality and
quantification (Belthangady and Royer, 2019; Melanthota et al.,
2022; Tian et al., 2021). This has inspired the search for integrated
solutions by the microscopy community (Bouchard et al., 2023;
Ebrahimi et al., 2023; McAleer et al., 2021; https://www.
microscope.healthcare.nikon.com/en_EU/resources/application-notes/
reduction-of-phototoxicity-of-fluorescent-images; Wagner et al.,
2021). The fusion of advanced optical hardware with computational
models and AI heralds new breakthroughs in overcoming the
sample damage that is induced by traditional live fluorescence
microscopy methodologies, marking the advent of AI-enhanced
smart microscopy (Fig. 1).
In this Opinion piece, we will first examine the mechanisms of

phototoxicity and strategies for its quantification. Next, we delve
into how deep learning can enhance microscopy image analysis,
while supporting more sample-friendly imaging setups. Finally, we
explore smart microscopes that integrate deep learning to balance
sample health and data quality in real-time acquisitions (Fig. 1).
Throughout, we aim to make the case that, although computational
advances are powerful, we must ensure that biological relevance is
the central focus. As AI continues to enhance imaging capabilities,
we must maintain sight of the overarching goal – to uncover
biological truths without or with only minimal disturbance. Rather
than blindly pushing the physical limits of microscopy, future AI-
enabled technologies should be designed to extract maximal
information through minimal invasiveness. Universal standard

metrics of photodamage would aid this pursuit, enabling
quantitative assessments of imaging protocols. We argue that
embracing this balanced perspective is crucial for developing
microscopes that truly observe life with minimal perturbance. Our
aim is to emphasize that striking the right equilibrium between
sample health and data quality will allow AI to fully realise the
promise of gentle yet highly informative live-cell fluorescence
microscopy.

Phototoxicity quantification
Fluorescence microscopy uses fluorescent reporters to visualize cell
components and activities (Heimstädt, 1911; Lehmann, 1913).
However, exciting fluorophores with light inevitably enhances the
generation of reactive oxygen species (ROS) through interactions
with ambient oxygen. At physiological levels, ROS participate in
signalling and are present in regular cellular processes. However,
excessive ROS result in oxidative stress and perturb the biological
processes under observation – an effect termed phototoxicity or
photodamage when these are caused by light (Icha et al., 2017;
Laissue, 2021; Reiche et al., 2022).

The primary ROS-related molecules include hydroxyl radicals,
hydrogen peroxide, nitric oxide and singlet oxygen, which readily
oxidize biomolecules, such as lipids, proteins and DNA (Eichler
et al., 2005; Hockberger et al., 1999). Higher-intensity UV and blue
excitation light can also directly damage DNA by producing
thymine dimers (Zhang et al., 2022b). Additionally, fluorophores
photobleach via ROS generation upon light exposure (Demchenko,
2020). Although interrelated, photobleaching and photodamage are
distinct and can occur independently (Ludvikova et al., 2023).

At the cellular level, accumulating oxidative stress disrupts redox
homeostasis and normal physiology (Icha et al., 2017; Tosheva
et al., 2020). Effects span mitochondrial fragmentation, cytoskeletal
derangements, stalled proliferation and loss of motility (Alam et al.,
2022; McDonald et al., 2012; Zhang et al., 2022b). In whole
organisms, this manifests as tissue degeneration, developmental
defects and apoptosis (Laissue et al., 2017).

Considering the varying light energy requirements current
microscopy modalities employ, many preventive strategies exist to
reduce the effects of phototoxicity, such as limiting light irradiation
by reducing the acquisition points or the light dose (Kiepas et al.,
2020; Mubaid and Brown, 2017; Reynaud et al., 2008), using light
detectors as an array of 32 GaAsP-PMT detectors or highly sensitive
sCMOS cameras (Huff, 2015; Saxena et al., 2015) and performing
bioluminescence-based assays that reduce the amount of light
required (Suzuki et al., 2016). Other strategies focus on controlling
oxidative stress effects in biological samples by supplementing
antioxidants (Harada et al., 2022 preprint; Kesari et al., 2020) or
chemically increasing the oxidative stress resistance of the sample
itself (Kunkel et al., 2018). Unfortunately, the degree of
photodamage elicited varies based on multiple factors, including
sample traits, illumination parameters and imaging modality
(Table 1) (Laissue et al., 2017; Reiche et al., 2022; Tinevez et al.,

Sample
health

Image
information

Deep
learning-

augmented
microscopy

Response prediction
Health estimation
Event detection

Temporal resolution
Spatial resolution

Field of view
SNR

Fig. 1. Integrating deep learning with live-cell microscopy. The delicate
balance between sample health and the information obtained by imaging
requires a compromise between both elements. Deep learning-augmented
microscopy aims to reduce this compromise, striving to obtain equal
information from our sample with less impact on its health.

Table 1. Light irradiation across microscopy modalities

Irradiation range (W/cm2) Irradiation average (W/cm2) Microscopy modality References

1000–20,000 10000 STED Wildanger et al., 2008
1000–10,000 5000 SMLM or RESOLFT Chen et al., 2018; Grotjohann et al., 2011
100–5000 1000 Confocal Icha et al., 2017
50–1000 100 SRRF Culley et al., 2018
5–100 10 TIRF; SIM Kwakwa et al., 2016; Li et al., 2015
0.5–100 5 LLS; wide-field Icha et al., 2017; Schermelleh et al., 2019
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2012). For example, actively dividing cells better tolerate
photodamage than post-mitotic neurons (Stevenson et al., 2006).
Additionally, the imaging modality is particularly critical for
sample health, as techniques that yield a higher signal-to-noise
ratio (SNR) such as super-resolution methods [STED, SMLM,
SIM, total internal reflection fluorescence (TIRF) and confocal
microscopy], generally require higher light energy than low SNR
or standard-resolution methods (LLS or wide-field microscopy),
creating a higher negative impact on the sample (Table 1) (Betzig
et al., 2006; Blom and Brismar, 2014; Dertinger et al., 2009; Dodt
et al., 2007; Gustafsson, 2000; Gustafsson et al., 2016;
Heintzmann and Huser, 2017; Hess et al., 2006; Huff, 2015;
Klar and Hell, 1999; Lelek et al., 2021). For this reason, designing
a strategy to prevent photodamage remains challenging. Namely,
there are no universal live-cell imaging metrics that can relate to
the light exposure and consequent damages of the sample and that
can be used to assess and optimise imaging systems. Quantifying
photodamage can be used to tune the acquisition parameters to
reduce the fluorescence light illumination and establish a doable
compromise between the sample health and, accordingly, image
information (Fig. 1). Excitingly, a quantitative measurement of
phototoxicity can be used to train a smart virtual component that
decides automatically towards less aggressive image acquisition
parameters and triggers these accordingly in the microscope.
Importantly, such universal metrics would also support the
reproducibility of biological readouts and improve result
robustness. By contrast, without these universal metrics, it is
challenging to fully leverage the capacity to image biological
systems since we are not assessing potential damage that arises
from the imaging itself. This impedes the assessment of
experimental conditions to achieve maximum spatial and
temporal resolution while preserving cell viability (Box 1).
Numerous known markers exist to identify and characterise

sample damage based on the previously mentioned phototoxicity
hallmarks (Alghamdi et al., 2021; Laissue et al., 2017). However,
most of these phototoxicity markers require the use of fluorescence
or luminescence light excitation to report back information. Thus,
incorporating them might compromise fluorescent channels usually
reserved for observing conditions of interest (e.g. markers for DNA
oxidative damage) and, when paired with live-cell experiments,

could increase the phototoxicity risk on the specimen due to the
interaction of light with oxygen radicals. Yet, quantification-based
screenings of phototoxicity are less commonly employed than the
observation and experience of the researchers to to assess cell
health (Laissue et al., 2017; Tosheva et al., 2020; Wäldchen et al.,
2015). Although there are some label-free attempts to provide
quantifiable metrics for the assessment of imaging setups and
support improving sample viability, they often simplify the impact
of fluorescence excitation light to a binary classification of viable/
healthy or non-viable/dead (Icha et al., 2017; Richmond et al.,
2017 preprint; Tinevez et al., 2012; Wäldchen et al., 2015). By
considering the decline of cell health and recovery as valid
photodamage stages for an image-based classifier, the assessment
of phototoxicity could be more flexible. Here, a gradient model that
considers the accumulation of discrete minor effects would more
accurately depict the spectrum of effects, as documented in the
existing literature. For example, the heartrate in zebrafish embryo
development was recently used as a gradual quantitative measure of
phototoxicity and used to optimise a multiphoton light-sheet
microscopy acquisition set up (Maioli et al., 2020). The ability of
deep learning to extract meaningful and general features from big
data has enabled image-based cell profiling, phenotyping and even
encoding of metastatic potential. One could for example, think
about using equivalent techniques to identify, encode and model
photodamage based on imaged cell morphology or monitored cell
behaviour (Caicedo et al., 2017; Chandrasekaran et al., 2021; Doron
et al., 2023 preprint; Wu et al., 2020). Despite these advances in
image analysis, general metrics based on cell physiological cues to
assess photodamage in live-cell imaging across different biological
samples and imaging setups are missing.

As advanced image analysis tools become increasingly available,
a future strategy could incorporate specific phototoxicity assessment
within the automated image acquisition and analysis workflows. We
would suggest less aggressive but still sufficiently accurate imaging
approaches in terms of resolution and SNR, such as holotomography
microscopy, to monitor sample health. These types of automated
observations, paired with standardised experimental guidelines for
identifying and quantifying phototoxic events, represent a promising
solution. We, therefore, argue that adopting such methods should be
prioritised by scientists aiming to create robust imaging strategies for
visualising biological phenomena.

Deep learning for microscopy to the rescue
The recent advancements in deep learning have laid a solid
foundation for the growing field of deep learning-augmented
microscopy (Pylvänäinen et al., 2023), which holds great promise
due to the flexibility it introduces for imaging experiments
(Belthangady and Royer, 2019; Meijering, 2020; Melanthota et al.,
2022; Moen et al., 2019; Tian et al., 2021). Among all the existing
techniques for microscopy image processing, many possibilities
exist to reduce phototoxicity (Fig. 2). Previous discussions (Tian
et al., 2021) divide such techniques between strategies that aim either
to surmount the physical limitations intrinsic to live fluorescence
microscopy imaging (i.e. acquisition speed or illumination) or to
enhance the content in qualitatively less superior but more sample-
friendly image data (Box 2). The former includes techniques, such as
denoising, restoration or temporal interpolation, which allow
reduced light exposure by using lower laser powers or lower
acquisition frame rate. The latter, referred to by the original authors
as ‘augmentation of microscopy data contrast’, includes techniques
such as virtual super-resolution (Chen et al., 2021; Jin et al., 2020;
Qiao et al., 2021, 2022; Wang et al., 2019; Zhang et al., 2022a).

Box 1. The relationship between fluorescence excitation
light, image information and phototoxicity
Modern microscopy methods aim to minimise required illumination by
targeting specific information for visualisation. However, acquired image
quality depends on several factors, including the SNR, contrast and
spatiotemporal resolution. Each microscopy technique has inherent
limitations that constrain optimising these properties. This necessitates
balancing trade-offs between them, described as the ‘microscope
pyramid of frustration’ (Scherf and Huisken, 2015; Weigert et al.,
2018). For super-resolutionmicroscopy, this trade-off spacewas recently
characterised (Jacquemet et al., 2020; Tosheva et al., 2020). The
balance can be tuned to experimental needs by adjusting light exposure
and acquisition speed – both common levers to enable gentler imaging.
As such, methods such as deep learning that computationally enhance
image quality from minimally invasive acquisitions are particularly
valuable. They alleviate the trade-off between image information and
phototoxicity constraints (Fig. 1). Indeed, the growing capacity of deep
learning to refine image-based information is attracting interest from the
microscopy community. It is becoming a popular strategy to enable
reduced phototoxicity imaging setups (Ebrahimi et al., 2023; Scherf and
Huisken, 2015).
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Recent advances in denoising and restoration using deep learning
have shown promising capabilities to support live-imaging setups
with reduced phototoxicity. For example, these methods can
virtually remove noise, enhance SNR and improve fluorescence
channel contrast in images acquired under low illumination
conditions (Krull et al., 2019, 2020; Weigert et al., 2018; Zhang
et al., 2022a) (Fig. 2C). Other techniques can computationally

reconstruct isotropic 3D volumetric information from sparse optical
sectioning data (Chen et al., 2021; Guo et al., 2020; Li et al., 2023,
2022b; McAleer et al., 2021; Park et al., 2022). Such capabilities
allow microscopists to use gentle imaging protocols with reduced
fluorescence excitation or sparse Z-stack sampling, while still
recovering high-quality image data computationally after
acquisition. Specifically, deep learning models can be trained on
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paired datasets from low- and high-illumination imaging of the same
samples (Box 2). The models then learn to enhance contrast and
virtually recover the lost information when applied to new
low-exposure test data. This strategy to reduce phototoxicity is also
being adopted by commercial solutions such as Enhance.ai, currently
part of the Nikon NIS-Elements imaging software (https://www.
microscope.healthcare.nikon.com/products/software/nis-elements).
These approaches are inherently gentler on live specimens because
they support imaging setups with reduced phototoxic excitation
levels. Similarly, intelligent temporal interpolation techniques, such
as content-aware frame interpolator (CAFI) or DBlink, allow for
slowing down acquisition frame rates, while accurately reconstructing

missing timepoints later using deep learning (Priessner et al.,
2021 preprint; Saguy et al., 2023) (Fig. 2D). As discussed above,
reducing the number of illumination timepoints can substantially
decrease cumulative photodamage. Longer intervals between
acquisitions potentially enables biological recovery processes to
repair photodamage, further supporting longer term live imaging.
However, one should be cautious when using these techniques for
further quantifications other than segmentation and tracking, such
as intensity-based quantifications (further discussed below).

Another innovative approach to enable reduced illumination
imaging setups is exploiting cross-modal style transfer
methodologies. In brief, these methods involve training a deep
learning model to computationally convert the style of an image to
mimic that from a different imaging modality (Fig. 2F). For
example, it has been shown that SIM images can be inferred from
input images that have been acquired with wide-field illumination,
which reduces the photon dose by a factor of 9 in 2D and 15 in 3D
(Qiao et al., 2021). This capability extends to numerous types of
fluorescence microscopy modalities, such as confocal to STED
(Bouchard et al., 2023; Wang et al., 2019), SIM and super-
resolution radial fluctuations (SRRF) microscopy (von Chamier
et al., 2021), or wide-field to SMLM (Macke et al., 2021; Nehme
et al., 2018; Ouyang et al., 2018). The enhancement in spatial
resolution through learning of the fine details of a sample is similar
in objective to traditional deconvolution. It offers comparable
benefits for mitigating phototoxicity, as it allows to generate
enhanced resolution data from gentler imaging methods (widefield
and/or confocal against SIM, STED and SMLM) (Table 1). These
techniques have some limitations that are subject to debate. For
instance, they might have limited accuracy when predicting

Fig. 2. The deep learning landscape for a gentler live-cell microscopy
imaging. (A) Comparison of the light intensities of different light microscopy
modalities on a sample according to its size. Some modalities such as light-
sheet microscopy use a lower amount of light on the sample to increase cell
survival. This modality is commonly used to image embryos owing to its
reduced phototoxicity, but it provides lower spatial resolution. Other
modalities, such as STED sacrifice sample health to gain spatial resolution,
as they require high light intensities. Typically, the microscopy imaging
setups designed for nanoscale resolution are used on microorganisms, such
as cell cultures, and necessitate higher laser powers and are more
aggressive for the living matter being imaged. (B) Common approaches to
train deep learning methods in the specific context of image denoising (see
Box 2). Supervised training requires datasets of paired images so given an
input noisy image (low quality), the output of the network (inferred image) is
compared with the expected ground truth image (high quality) to compute a
loss value and train the network. In generative approaches, the images are
not paired so the network learns the distribution of the low quality and high-
quality image datasets and how to translate one into the other one. The grey
arrowheads pointing at each other represent the cycle in unsupervised
generative approaches of translating an image from one distribution into the
other one and the translation back using a neural network. Self-supervised
approaches are used when only a dataset of low-quality images is available.
Here, the input image is transformed to virtually create a paired image that
represents a pseudo-ground-truth and can be used to train the network.
(C–F) Deep learning-augmented microscopy. Deep learning models can be
used to enable microscopy acquisitions that use lower fluorescence light
intensities or illuminate the sample less often. Thereafter, the images are
processed with a model trained for a specific task. (C) Image contrast
enhancement with denoising and restoration. High illumination intensities are
used to obtain images with a high signal-to-noise-ratio (SNR) at the expense
of causing photobleaching, among other effects that can be detrimental to
the sample. Reducing the fluorescence illumination intensity prevents
photobleaching but results in images with a low SNR. By using deep
learning, the acquisition duration can be extended by lowering the laser
power and acquiring images with a low SNR and decreased photobleaching.
An image restoration model can be trained on pairs of images from fixed
samples, which facilitates creating perfectly aligned pairs of low and high
SNR. After training and evaluation, the model can be used to process the
more gently acquired low SNR time-lapse movies and enhance contrast,
recovering the image quality of high illumination setups. GT, ground truth.
(D) Temporal interpolation. Here, the temporal resolution is improved by
training a model to predict the intermediate time points between two given
frames. (E) Spatial resolution enhancement. A super-resolution model is
trained to translate images from one modality (e.g. confocal) into another
one (e.g. SIM or SRRF). Depending on the availability of paired images for
the training, one should choose between a generative or a supervised
learning approach. (F) Structural and molecular information enhancement.
The phototoxic effects of light are not equal across wavelengths. Longer
wavelengths, such as red light, are less phototoxic than shorter ones, such
as UV light. Given that it is not always possible to use less damaging light
wavelengths options, one can opt to circumvent the partial use of
fluorescence illumination by using virtual labelling approaches that can
generate labelling out of existing structures from bright-field, autofluorescence
or crosstalk between channels. Images in B, E and F were extracted and
modified from von Chamier et al. (2021) and those in C and D from Spahn
et al. (2022) which were both published under an CC-BY 4.0 license.

Box 2. Guidelines for annotation and model training to
optimize deep learning for microscopy image analysis
Traditionally, deep learning models are trained in a supervised – using
paired input-output image datasets – or unsupervised – the model learns
patterns and insights from unlabelled input images without any explicit
guidance – manner (Fig. 2B). Supervised approaches have
demonstrated superior accuracy and specificity to the task and data
distribution, but their versatility requires the availability of paired images.
Microscopy imaging allows for creating paired image datasets by
alternating acquisition setups (e.g. channels) and combining different
modalities (e.g. paired widefield microscopy and SIM) (Qiao et al., 2021;
von Chamier et al., 2021), simulating data (Fang et al., 2021; Nehme
et al., 2018; Oh and Jeong, 2023; Sage et al., 2019; Saguy et al., 2023)
or, recently, by developing correlative approaches, such as correlative
light and electron microscopy (CLEM) (de Boer et al., 2015). However,
cases remain in which the obtaining of paired input and output images to
train deep learning models is still a limitation. For example, in live
imaging, paired acquisitions can be complicated by sample movements
or photobleaching. Alternatively, one could acquire paired images of ex
vivo samples – providing perfectly aligned images for training and
assessment – to subsequently perform inference with in vivo images
(Fig. 2C) (Spahn et al., 2022; Weigert et al., 2018; Xu et al., 2023).
Importantly, collecting images from fixed samples supports the faster
creation of more extensive and diverse datasets than live imaging.
However, there are scenarios in which such paired datasets do not
encapsulate the complexity of live experiments, are not experimentally
feasible or where cross-modality acquisition devices are inaccessible.
Therefore, this limitation, as well as time-consuming data annotation
processes, has propelled the exploration into alternative approaches,
such as semi- or weakly supervised (Bilodeau et al., 2022), self-
supervised (Krull et al., 2019, 2020) or generative techniques (Li et al.,
2022a; Wang et al., 2019; Xu et al., 2023) (Fig. 2B).
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fluorescence intensity, which can make it challenging to measure
protein stoichiometry. However, their ability to enhance image
quality has a direct effect on subsequent tasks like localization,
tracking and segmentation, thereby improving their accuracy
(Belthangady and Royer, 2019; Hutson, 2018; Priessner et al.,
2021 preprint; Weigert et al., 2018). It has been suggested that less
aggressive live imaging approaches might cause aesthetical blur and
be less appealing. However, such datasets can comprise easier-to-
interpret data due to the reduction in the biological artefacts that are
induced by photodamage (e.g. apoptosis, stressed cells or specimen
shrinkage during illumination) and have the benefit of preserving
close-to physiological conditions (Weigert et al., 2018).
By exploiting the capability of data-driven methods, virtual (or

artificial) labelling approaches have emerged (Fig. 2F). Virtual
labelling uses deep learning to computationally predict fluorescence
labelling patterns and signals directly from an image, representing
yet another fluorescence channel or from transmitted light images,
without actual fluorescent tags. By inferring some of the biological
structures through deep learning methods, virtual labelling allows
end users to eliminate the most harmful illumination wavelengths
from their experiments. For example, cell nuclei (e.g. Hoechst
staining excited with an ∼475 nm laser) can be virtually inferred
from actin (e.g. Lifeact staining excited with an∼561 nm laser),
which results in a halved light dose compared with an imaging setup
that illuminates both channels (von Chamier et al., 2021). Likewise,
artificial labelling can be employed for spectral unmixing, which
offers several key advantages, including illumination channel
reduction and acceleration of image acquisition (Fig. 2F) (Jiang
et al., 2023 preprint; McRae et al., 2019; Xue et al., 2022). One
could also eliminate the need for sample exposure to excitation light
by estimating specific fluorescence information (e.g. nucleoli, cell
membrane, nuclear envelope, mitochondria or neuron-specific
tubulin) from brightfield input images (Christiansen et al., 2018;
Ounkomol et al., 2018; von Chamier et al., 2021). It is worth noting
that the latter technique is also categorized as a cross-modality style
transfer approach. All these approaches enable the acquisition of
images with less explicit information that, after virtual labelling, can
be quantitatively processed as if the fluorescence information had
been acquired. Among these benefits, the former is pivotal in
enabling more sample-friendly setups, and indeed, virtual labelling
is often suitable as an intermediary step for further quantification,
such as segmentation or tracking (Hollandi et al., 2020; von
Chamier et al., 2021).
Of note, most cited approaches here can now be widely adopted

thanks to the different software developments that enable the
training, deployment and sharing of deep learning models in a user-
friendly manner (Gómez-de-Mariscal et al., 2021; Ouyang et al.,
2022 preprint; Spahn et al., 2022; von Chamier et al., 2021). We
expect that with the growth of these resources along with a more
easily accessible high performing computational power, the deep
learning augmented microscopy will be more widely harnessed in
image driven life-sciences research.

Gentle smart microscopes
The integration of AI components directly into the fluorescence
microscopy acquisition sequence shows great promise for
minimizing photodamage in real-time and enabling accurate
observations of biological dynamics. Analogous to autonomous
vehicles or intelligent industrial robots, microscopes can incorporate
AI capabilities to make real-time decisions by analysing the
observed image data and integrating them into an intelligent
feedback loop. This loop is responsible for analysing the data that is

being observed in real time and updating the imaging parameters
(e.g. time-lapse frequency or illumination intensity) based on visual
cues; it would balance sample health against image quality to
optimize data collection (Figs 1 and 3) (Scherf and Huisken, 2015).
For example, in tracking the membrane dynamics of individual
cells, the microscope could use a low frame rate to gently image a
fluorescent membrane marker, while simultaneously tracking cells
via a transmitted light channel at a higher frame rate. This system
could identify fast dynamics or ambiguous situations (e.g. two cells
moving close together) and balance trade-offs on when and where to
increase imaging speed or acquire extra channels, such as nuclear
stains, to properly identify each cell. Incorporating quantitative
phototoxicity reporter data on cell resilience would further optimize
these decisions, as losing a cell track might be preferable to
aggressively re-imaging the entire sample. More broadly,
developing such smart microscopes is tied to balancing the
combination of features (spatiotemporal resolution, SNR, field of
view size, fluorescent channels, etc.) that extract the most relevant
information against factors that preserve sample health. Likewise,
the availability of quantitative metrics for sample health and image
information quality, should stimulate the design of AI systems that,
after training, would automatically make these decisions driven by
the observed data in a smart fashion.

There are already a number of conceptualised and proven
approaches towards such gentle smart microscopy. Of those, event-
driven approaches automatically identify specific objects or incidents
in images acquired in a less phototoxic setup, which triggers their
acquisition in real-time (Alvelid et al., 2022; André et al., 2023;
Chiron et al., 2022; Fox et al., 2022; Mahecic et al., 2022) (Fig. 3).
Although these adaptive approaches reduce the induced phototoxicity
by increasing the illumination of the sample when needed, in most
cases, they are equipped with deep learning models that are trained to
recognise predefined objects or elements in the images. Given its
complexity, these might not always be present for biology set-ups,
limiting or biasing the observation of novel physiological processes.
Alternative approaches propose the integration of image resolution
enhancement in the image acquisition loop to obtain faster and gentler
setups. For instance, a deep learning model that is trained and
validated in the acquisition loop to enhance the volumetric
reconstruction of the sample, providing an adaptive light field
microscopy (LFM) setup, has been presented (Wagner et al., 2021). In
the context of super-resolution imaging, evaluating the quality of
virtually inferred STED images from confocal microscopy images
has been proposed so that the uncertainty in the observed sample can
be determined and a decision on whether a new STED image should
be acquired or not made (Bouchard et al., 2023). All theseworks pose
new paradigms in the realm of smart microscopy.

Despite sample health preservation being both a strong motivation
and a major limitation in live-cell imaging, none of the currently
existing solutions can directly analyse, estimate and integrate
information on the sample health into the acquisition loop. Robust
photodamage reporters that provide quantitative assessments of sample
health without requiring additional fluorescence channels can,
therefore, directly contribute to more reproducible biological
readouts. This could involve exploring modalities, such as
transmitted light microscopy or label-free techniques. Moreover,
quantitative reporters could support the design of automated
workflows that analyse sample health in real-time during image
acquisition rather than only evaluating the image quality (Fig. 3). This
would allow the detection of early signs of photodamage and the
adaptive determination of optimal imaging conditions. In other words,
it will open the door for data-driven sample-oriented live microscopy.
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Pursuing such technical innovations while deepening our
understanding of the mechanisms that give rise to photodamage
will enable microscopists to unlock the full potential of smart
imaging. With photodamage-aware AI and automated tools, the
goal of observing undisturbed physiological processes can be
realised. This will profoundly enhance the capacity of fluorescence
microscopy to uncover ground truths in biology.

Challenges and future outlook
In addition to determining the optimal deep learning approaches for
various image-processing tasks, the success of AI-enhanced live
microscopy depends on its ability to reliably extract quantifiable

physiological information from the acquired image data. Thus, more
rigorous validation methodologies and standardized quantitative
strategies are still required to ensure both the biological fidelity of
computationally restored images and the integrity of recovered
signal intensities from techniques that artificially generate or
enhance images (i.e. virtual microscopy imaging) (Belthangady
and Royer, 2019; Laine et al., 2021; Lambert andWaters, 2023). For
example, a better understanding of how intensity-based
quantifications should be performed from virtually enhanced
images is very much needed. Biological image data exhibit
considerable variability from factors, such as sample physiology,
protocols, instrumentation and even individual researchers.

Unaware of sample behaviour
Good spatial information
Good time sampling

Unaware of sample behaviour
Good time sampling
Structural artefacts

Unaware of sample behaviour
Good spatial information
Poor time sampling

Aware of sample behaviour
Good spatial information
Adaptive time sampling
Risk to undersample events

Aware of sample behaviour
Adaptive spatial information
Adaptive time sampling
Risk to undersample events

All of the above

Event driven

Temporal interpolation

Image contrast enhancement
Spatial resolution enhancement
Virtual labelling

Key event

Ill
um

in
at

io
n

in
te

ns
it

y
Ill

um
in

at
io

n
in

te
ns

it
y

Ill
um

in
at

io
n

in
te

ns
it

y
Ill

um
in

at
io

n
in

te
ns

it
y

Ill
um

in
at

io
n

in
te

ns
it

y

Combined optimisation

A

B

C

D

E

AI-enhanced
microscopy

Monitored
sample damage

High intensity
illumination

Low intensity
illumination

Virtual
interpolation

Key

Fig. 3. Prospective imaging with AI-enhanced live-cell microscopy. Shown here are examples of different acquisition frequencies and illumination
intensities in a live-cell microscopy imaging experiment that is used to observe a particular key event. The gradient bar represents the estimated health
sample damage during the acquisition. The length of the acquisition steps represents high (long blue bars) and low (short green bars) illumination intensities.
(A) Uniform fast time-frequency with high illumination intensities allows for high spatial and temporal resolution at the expense of drastically damaging the
sample and observing a key event under unhealthy conditions. (B) Uniform fast time-frequency with low illumination intensities allows for a gentle acquisition
with high temporal resolution but with low SNRs or suboptimal spatial resolution. Using the deep learning approaches shown in Fig. 2, the image quality
could be improved at the risk of generating structural artefacts. (C) Uniform slow time-frequency with high illumination intensities allows for high spatial
resolution in a gentler manner but critical information about the event of interest might be missed. A deep learning-based temporal interpolator could partly
recover the information obtained from the set-up in A. (D) Non-uniform event-driven acquisition in which the high-intensity illumination is triggered by the
automatic identification of specific hallmarks in the field of view. This approach allows for a gentler adaptive sampling with good structural and temporal
resolution, but can be biased towards the data used to train or codify event identification. (E) A combined optimisation of the above approaches that balances
the health state of the imaged sample and the quality of the information at specific time points. The system uses image contrast enhancement or temporal
interpolations to improve image quality during non-event acquisition, allowing a gentler acquisition. When an event of interest is anticipated, it automatically
speeds up the acquisition and decides on appropriate illumination intensities. This preserves the information needed about the event of interest without
drastically increasing the induced phototoxicity on the sample.
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Therefore, establishing accurate ‘ground truth’ data is critical (Laine
et al., 2021; Maška et al., 2023) given that deep learning model
training depends heavily on input data quality. This encompasses
factors ranging from the number of training images to their
relevance for the intended analytical task. For example, defining the
ideal sampling frequency to enable precise cell tracking requires
determining the right balance between data acquisition and model
performance. Although larger training datasets are thought to
enhance model accuracy, strategies to effectively combine diverse
datasets, while retaining the specificity of individual experimental
conditions, remain to be developed. Publicly available annotated
datasets are expanding (Caicedo et al., 2019; Ouyang et al., 2019;
Maška et al., 2023), along with pre-trained models to facilitate
transfer learning and fine-tuning, such as the Bioimage Model Zoo
(Ouyang et al., 2022 preprint) and MONAI (Cardoso et al., 2022).
However, best practices for assembling suitable training data and
executing productive transfer learning must still be established,
considering criteria such as data quality, image traits and analytical
goals. Given that live-cell images are highly redundant, such
optimization could maximize information extraction, while
minimizing photodamage during acquisition.
Unsupervised deep learning approaches learn and match data

distributions even in highly heterogeneous or complex scenarios
without the need for human descriptions or annotations. Thus,
advancing generative models and unsupervised and/or self-
supervised approaches that can effectively learn from unpaired
data alone can provide flexibility when paired datasets are difficult
to obtain experimentally (Box 2) and so contribute to unbiased
observations. Moreover, such methods could be exploited to
identify the events that deviate from the general distribution, i.e.
to discover new biological patterns (Pinkard and Waller, 2022).
Life scientists have extensive expertise in determining optimal

parameters, including sampling frequencies, resolution and fields of
view for microscopy experiments. Although these hand-tuned
parameters might sometimes be suboptimal for subsequent
computational analysis and quantification, they currently provide
our best reference for what constitutes a ‘high quality’ image and for
evaluating when obtained quantifications are accurate. One
promising direction is to incorporate user knowledge and
experience more directly into the image processing loop to help
guide model performance towards more biologically relevant
outputs, specific to each experiment. Recent advances, such as
creating analytical representations of sparse or raw user inputs to
generate priors, offer routes to achieve this. Priors refer to probability
distributions that encode assumptions about the data that is going to
be analysed. For example, indicating the location of the object to
segment with a model. These priors constrain the solutions by
reducing the space of possibilities. This general approach has already
been proposed for segmenting natural images, such as in the segment
anything model (SAM) (Kirillov et al., 2023). Overall, incorporating
techniques to integrate human-based feedback as priors into the deep
learning pipeline (i.e. the scientist-in-the-loop) represents an
important step towards bringing AI-enhanced microscopy closer to
matching human experience and intuition.

Conclusion
Fluorescence microscopy has become an indispensable tool for
gaining unparalleled insights into biomolecular dynamics in cell
biology. However, phototoxicity remains a major impediment that
necessitates both deeper mechanistic understanding and new imaging
techniques to mitigate these limitations. Although emerging synergies
between microscopy hardware innovation and computational imaging

show promise, standardised methodologies to comprehensively assess
photodamage are still lacking. Recent advances in deep learning have
made progress by enhancing information extraction from low-light or
accelerated acquisitions, thereby reducing sample phototoxicity.
However, more robust validation strategies are still required to
ensure biological fidelity. In order to ensure the success of deep
learning-enhanced microscopy, it is crucial to validate it through
quantifiable image properties and sample physiology metrics. It is
important to benchmark the key image characteristics, such as SNR,
resolution limits and molecular content accuracy, against
phototoxicity levels. At the same time, it is essential to establish
sensitive biological measures that can detect even the slightest
deviations from expected cellular behaviour caused by light exposure.
Ideally, photodamage assessments should provide actionable and
quantitative feedback on imaging protocols, enabling microscopists to
optimize the balance between data quality and sample health.

There is a significant opportunity to create universal metrics for
photodamage that can account for the incremental effects of light on
living samples. Non-invasive techniques such as label-free transmitted
light imaging can be used to monitor gradual changes in morphology,
metabolism or motility. Additionally, identifying molecular
biomarkers of photostress that are accessible through gentle imaging
can have a profound impact. It is crucial to have a quantitative damage-
reporting system that can detect early warnings, rather than only overt
cytotoxicity, and allow for real-time optimization during live
acquisition. By incorporating such quantitative damage assessments
into intelligent automated analysis workflows, microscopes can
dynamically optimise imaging conditions for each specimen.
Realising this will require converging advances across several
domains: (1) improving biological knowledge of photodamage
mechanisms, (2) advancing microscope hardware designs, (3)
creating new computational imaging techniques such as deep
learning, and (4) accurately interpreting model outputs. A remaining
challenge is that deep learning model training requires extensive
paired datasets that sufficiently encapsulate the inherent biological
variability. Unsupervised learning alternatives provide flexibility but
might compromise accuracy compared to supervised techniques.
Incorporating biological expertise through techniques such as
firstly, priors, which are probability distributions that encode
assumptions to constrain solutions, and, secondly, prompts, which
provide contextual guidance for generative models, appears
promising for guiding model training. Additionally, the field needs
empirically driven strategies to optimise model training and validation
protocols.

As AI continues to improve imaging capabilities, it is important
to remember that the ultimate goal is not just to recover data, but to
uncover biological truths. To achieve this, we must prioritise
minimising photodamage over pushing technical limits and over
relying on computational fixes. Simply relying on technology is not
enough, instead the focus should be on maximising information
with minimum invasiveness. We must approach innovation with the
mindset that it should serve to observe life with minimal
perturbance. Therefore, the principles of gentle acquisition and
relevant observation of living systems should be the driving force
behind future innovations.
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Wäldchen, S., Lehmann, J., Klein, T., van de Linde, S. and Sauer, M. (2015).
Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5,
15348. doi:10.1038/srep15348

Wang, H., Rivenson, Y., Jin, Y., Wei, Z., Gao, R., Günaydın, H., Bentolila, L. A.,
Kural, C. and Ozcan, A. (2019). Deep learning enables cross-modality super-
resolution in fluorescence microscopy. Nat. Methods 16, 103-110. doi:10.1038/
s41592-018-0239-0

Weigert, M., Schmidt, U., Boothe, T., Müller, A., Dibrov, A., Jain, A., Wilhelm, B.,
Schmidt, D., Broaddus, C., Culley, S. et al. (2018). Content-aware image
restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15,
1090-1097. doi:10.1038/s41592-018-0216-7

Wildanger, D., Rittweger, E., Kastrup, L. and Hell, S. W. (2008). STED
microscopy with a supercontinuum laser source. Opt. Express 16, 9614-9621.
doi:10.1364/OE.16.009614

Wu, P.-H., Gilkes, D. M., Phillip, J. M., Narkar, A., Cheng, T. W.-T., Marchand, J.,
Lee, M.-H., Li, R. and Wirtz, D. (2020). Single-cell morphology encodes
metastatic potential. Sci. Adv. 6, eaaw6938. doi:10.1126/sciadv.aaw6938

Xu, Y. K . T., Graves, A. R., Coste, G. I., Huganir, R. L., Bergles, D. E.,
Charles, A. S. and Sulam, J. (2023). Cross-modality supervised image
restoration enables nanoscale tracking of synaptic plasticity in living mice. Nat.
Methods 20, 935-944. doi:10.1038/s41592-023-01871-6

Xue, M.-Q., Zhu, X.-L., Wang, G. and Xu, Y.-Y. (2022). DULoc: quantitatively
unmixing protein subcellular location patterns in immunofluorescence images
based on deep learning features. Bioinformatics 38, 827-833. doi:10.1093/
bioinformatics/btab730

Zhang, Q., Chen, J., Li, J., Bo, E., Jiang, H., Lu, X., Zhong, L. and Tian, J.
(2022a). Deep learning-based single-shot structured illumination microscopy.
Opt. Lasers Eng. 155, 107066. doi:10.1016/j.optlaseng.2022.107066

Zhang, X., Dorlhiac, G., Landry, M. P. and Streets, A. (2022b). Phototoxic effects
of nonlinear optical microscopy on cell cycle, oxidative states, and gene
expression. Sci. Rep. 12, 18796. doi:10.1038/s41598-022-23054-7

11

OPINION Journal of Cell Science (2024) 137, jcs261545. doi:10.1242/jcs.261545

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://doi.org/10.1101/2021.11.02.466664
https://doi.org/10.1101/2021.11.02.466664
https://doi.org/10.1016/j.ceb.2023.102271
https://doi.org/10.1016/j.ceb.2023.102271
https://doi.org/10.1016/j.ceb.2023.102271
https://doi.org/10.1038/s41592-020-01048-5
https://doi.org/10.1038/s41592-020-01048-5
https://doi.org/10.1038/s41592-020-01048-5
https://doi.org/10.1038/s41587-022-01471-3
https://doi.org/10.1038/s41587-022-01471-3
https://doi.org/10.1038/s41587-022-01471-3
https://doi.org/10.1038/s41587-022-01471-3
https://doi.org/10.1038/srep09592
https://doi.org/10.1038/srep09592
https://doi.org/10.1038/srep09592
https://doi.org/10.1242/jcs.259656
https://doi.org/10.1242/jcs.259656
https://doi.org/10.1242/jcs.259656
https://doi.org/10.1242/jcs.259656
https://doi.org/10.2976/1.2974980
https://doi.org/10.2976/1.2974980
https://doi.org/10.2976/1.2974980
https://doi.org/10.48550/arXiv.1701.06109
https://doi.org/10.48550/arXiv.1701.06109
https://doi.org/10.48550/arXiv.1701.06109
https://doi.org/10.1038/s41592-019-0364-4
https://doi.org/10.1038/s41592-019-0364-4
https://doi.org/10.1038/s41592-019-0364-4
https://doi.org/10.1038/s41592-019-0364-4
https://doi.org/10.1038/s41592-023-01966-0
https://doi.org/10.1038/s41592-023-01966-0
https://doi.org/10.1038/s41592-023-01966-0
https://doi.org/10.1038/s41592-023-01966-0
https://doi.org/10.1364/AOP.7.000241
https://doi.org/10.1364/AOP.7.000241
https://doi.org/10.1038/nbt.3310
https://doi.org/10.1038/nbt.3310
https://doi.org/10.1038/s41556-018-0251-8
https://doi.org/10.1038/s41556-018-0251-8
https://doi.org/10.1038/s41556-018-0251-8
https://doi.org/10.1038/s42003-022-03634-z
https://doi.org/10.1038/s42003-022-03634-z
https://doi.org/10.1038/s42003-022-03634-z
https://doi.org/10.1038/s42003-022-03634-z
https://doi.org/10.1364/OE.14.009786
https://doi.org/10.1364/OE.14.009786
https://doi.org/10.1364/OE.14.009786
https://doi.org/10.5772/65048
https://doi.org/10.5772/65048
https://doi.org/10.5772/65048
https://doi.org/10.5772/65048
https://doi.org/10.5772/65048
https://doi.org/10.1002/lsm.23414
https://doi.org/10.1002/lsm.23414
https://doi.org/10.1002/lsm.23414
https://doi.org/10.1088/1361-6463/ab6b95
https://doi.org/10.1088/1361-6463/ab6b95
https://doi.org/10.1088/1361-6463/ab6b95
https://doi.org/10.1038/nmeth1017
https://doi.org/10.1038/nmeth1017
https://doi.org/10.1038/nmeth1017
https://doi.org/10.1038/nmeth1017
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41467-021-22518-0
https://doi.org/10.1038/s41592-021-01136-0
https://doi.org/10.1038/s41592-021-01136-0
https://doi.org/10.1038/s41592-021-01136-0
https://doi.org/10.1038/s41592-021-01136-0
https://doi.org/10.1038/srep15348
https://doi.org/10.1038/srep15348
https://doi.org/10.1038/srep15348
https://doi.org/10.1038/s41592-018-0239-0
https://doi.org/10.1038/s41592-018-0239-0
https://doi.org/10.1038/s41592-018-0239-0
https://doi.org/10.1038/s41592-018-0239-0
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1038/s41592-018-0216-7
https://doi.org/10.1364/OE.16.009614
https://doi.org/10.1364/OE.16.009614
https://doi.org/10.1364/OE.16.009614
https://doi.org/10.1126/sciadv.aaw6938
https://doi.org/10.1126/sciadv.aaw6938
https://doi.org/10.1126/sciadv.aaw6938
https://doi.org/10.1038/s41592-023-01871-6
https://doi.org/10.1038/s41592-023-01871-6
https://doi.org/10.1038/s41592-023-01871-6
https://doi.org/10.1038/s41592-023-01871-6
https://doi.org/10.1093/bioinformatics/btab730
https://doi.org/10.1093/bioinformatics/btab730
https://doi.org/10.1093/bioinformatics/btab730
https://doi.org/10.1093/bioinformatics/btab730
https://doi.org/10.1016/j.optlaseng.2022.107066
https://doi.org/10.1016/j.optlaseng.2022.107066
https://doi.org/10.1016/j.optlaseng.2022.107066
https://doi.org/10.1038/s41598-022-23054-7
https://doi.org/10.1038/s41598-022-23054-7
https://doi.org/10.1038/s41598-022-23054-7

