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Abstract
Optical microscopy is an indispensable tool in life sciences research, but con-
ventional techniques require compromises between imaging parameters like
speed, resolution, field of view and phototoxicity. To overcome these limitations,
data-driven microscopes incorporate feedback loops between data acquisition
and analysis. This review overviews how machine learning enables automated
image analysis to optimise microscopy in real time. We first introduce key
data-driven microscopy concepts and machine learning methods relevant to
microscopy image analysis. Subsequently, we highlight pioneering works and
recent advances in integrating machine learning into microscopy acquisition
workflows, including optimising illumination, switching modalities and acqui-
sition rates, and triggering targeted experiments. We then discuss the remaining
challenges and future outlook. Overall, intelligent microscopes that can sense,
analyse and adapt promise to transform optical imaging by opening new
experimental possibilities.
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1 INTRODUCTION

Optical microscopy techniques, such as brightfield, phase
contrast, fluorescence and super-resolution imaging, are
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widely used in life sciences to obtain valuable spatiotem-
poral information for studying cells and model organ-
isms. However, these techniques have certain limitations
with respect to critical parameters such as resolution,
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F IGURE 1 Data-driven microscopy workflow. (A) Pyramid of frustration: trade-offs in acquisition parameters are visualised as a
pyramid, highlighting the interdependence of signal-to-noise ratio (SNR), sample health, temporal resolution, spatial resolution, and the
extend to the field of view, 3D volume and multiplexing (x, y, z, 𝜆 dimensions). Enhancing one parameter typically compromises at least one
other. (B) Schematic of workflow: acquisition control software: software-driven control of microscope hardware for image capture;
microscope hardware: imaging devices with programmatic interface; custom reactive agent: integration of a custom reactive agent that
analyses live acquisition data, providing real-time feedback to the software to adapt the acquisition parameters. (C) Acquisition stages:
observation stage (blue): the sample is continuously monitored using a simple imaging protocol, such as brightfield (this stage is non-invasive
and preserves sample health) and reactive stage (magenta): upon detection of a target event (e.g. a cell entering a specific cell-cycle stage), the
reactive agent initiates a fluorescence imaging protocol, enabling detailed observation of the event.

acquisition speed, signal-to-noise ratio, field of view, extent
of multiplexing, z-depth dimensions and phototoxicity.
The trade-offs between these critical imaging parameters
are often represented within a ‘pyramid of frustration’
(Figure 1A). Although improving hardware can extend
capabilities, optimal balancing depends on the imaging
context. Especially, as scientific research delves into more
complex questions, trying to understand the mechanisms
of cell and infection biology at a molecular level in physi-
ological context, traditional static microscopes may not be
sufficient to capture relevant dynamics or rare events.
Innovative efforts focus on overcoming these restric-

tions through integrated automation. Data-driven micro-
scopes employ real-time data analysis to dynamically
control and adapt acquisition (Figure 1B). The core concept
involves introducing automated feedback loops between
image-data interpretation andmicroscope parameters tun-
ing.Quantitativemetrics extracted via computational anal-
ysis then dictate adaptive protocols tailored to phenomena

of interest. The system reacts to predefined observational
triggers by optimising imaging parameters – such as exci-
tation, stage position, and objective lenses – to capture
critical events efficiently (Figure 1C).
Image analysis algorithms are pivotal in data-driven

methodologieswith customised approaches serving a large
variety of situations. These approaches can use machine
learning techniques to perform tasks such as classifica-
tion, segmentation, tracking, and reconstruction without
the need for explicit programming. By integratingmachine
learning, intelligent microscopes can make contextual
decisions by identifying subtle features that traditional
rule-based software may miss. Thus, these data-driven
principles are able to increase the efficiency of image
acquisition and enrich the information contents in diverse
scenarios, especially in high throughput and high-content
imaging. It enables to capture discrete and rare events at
different temporal and spatial scales and relate it to pop-
ulation behaviour. This information cannot be accessed
with classical imaging approaches, especially because
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MORGADO et al. 3

they would require extended exposure to cell damaging
imaging conditions.
In this review, we will first introduce the concept of

data-driven microscopy and the commonmethods used to
address microscopy challenges. Then, we will explain the
principles and frameworks that enable reactive machine
learning-based data-driven systems. Finally, we will show-
case various applications that benefit from the integration
of data-driven microscopy to highlight new experimen-
tal possibilities.

2 DATA-DRIVENMICROSCOPY

Data-driven microscopes can analyse imaging data in real
time and execute predefined actions upon specific triggers.
These reactive systems feature feedback loops between
quantitative image analysis andmicroscope control, which
allows them to tailor data acquisition to objects or phenom-
ena of interest. Specifically for event-driven approaches,
this trigger can be based on detecting the occurrence of a
specific event. By implementing the prediction of states of
interest even smart or intelligent microscopy approaches
can be realised.
A recent work showcasing event-triggered protocol

switching is by Oscar André et al.1 They, for example, per-
formed dual-scale imaging of host-pathogen interactions

Data-driven microscope: The data-driven microscope
integrates advanced computational techniques into its
imaging capabilities. It uses machine learning algorithms
and real-time data analysis to automatically adjust the
acquisition parameters. This way it is possible to opti-
mise imaging conditions, enhance image quality and
extract meaningful information without heavy reliance on
manual intervention.

using a co-culture model. The system first continuously
scanned multiple fields of view of the sample at low mag-
nification to monitor interactions between fluorescently
labelled human cells and bacteria. An integrated algo-
rithm analysed each frame to detect interaction events
based on proximity analysis. Upon detecting a target num-
ber of cell-bacteria interactions, the system automatically
switched to a higher numerical aperture objective and
acquisition speed and imaged the identified interactions.
This allowed to capture the cellular actin remodelling
induced by the infection at high temporal-spatial res-
olution. This dual-scale approach balances population-
level behavioural monitoring and targeted high-resolution
data collection in a highly efficient and high-content
manner.
In super-resolution microscopy, data-driven strategies

help mitigate inherent trade-offs between resolution,
speed, field of view and phototoxicity during live imaging.
A system by Jonatan Alvelid et al.2 combines fast wide-
field surveillance with precisely targeted nanoscopy imag-
ing. For instance, cultured neurons expressing genetically
encoded calcium indicators were continuously monitored
with widefield imaging to detect neuronal activity. Real-
time analysis of calcium dynamics allowed the detection of
spike events and localisation of regions of interest. Upon
spike detection, the system rapidly positioned and acti-
vated Stimulated Emission Depletion (STED) nanoscopy
illumination at identified sites to visualise synaptic vesicle
dynamics. By limiting high-intensity light exposure spa-
tially and temporally only when critical events occurred,
this selective super-resolution imaging approach reduced
cumulative photon dose by over 75% compared to continu-
ous STED acquisition.
Beyond adjusting microscope hardware, data-driven

systems can coordinate external experimental devices by
integrating microfluidics control software. An automated
live-to-fixed cell imaging platform called NanoJ-Fluidics,
developed by Pedro Almada et al.,3 performs buffer
exchange directly on the microscope stage. The system
uses simple epifluorescence image analysis to detect cell
rounding at the onset of mitosis. Upon rounding detection,
NanoJ-Fluidics triggers fixation, permeabilisation and flu-
orescent labelling through sequential perfusion, preparing
the cells for subsequent super-resolution imaging.
These examples showcase the reliance on traditional

image analysis techniques to identify events of interest,
which typically involve signal colocalisation, intensity, or
shape thresholds. However, the integration of machine
learning-based image analysis can elevate reactive data-
drivenmicroscopy to a new level by enabling the detection
of subtle and complex features that would otherwise
go unnoticed.
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4 MORGADO et al.

F IGURE 2 Overview of machine learning concepts for microscopy image analysis. (A) Schematic depicting that deep learning is a
subset of machine learning, which is in turn a subset of artificial intelligence. (B) Schematic of major steps on training and using a machine
learning model. First, data is collected, preprocessed and split into training, validation and test datasets. Models are trained on the training
dataset and training is evaluated with the validation set to prevent overfitting. Once trained, a quality control of the model is done using an
independent test dataset and if positive, the model can be used to generate predictions on new unseen data.

3 MACHINE LEARNING FOR
AUTOMATEDMICROSCOPY IMAGE
ANALYSIS

Recent advances in machine learning, particularly in deep
learning neural networks, have revolutionised automated
image analysis for microscopy. By training on a sufficient
amount of data, machine learning models can achieve or
surpass human performance in complex image processing
tasks such as cell identification, structure segmentation,
motion tracking and signal or resolution enhancement.
Different models excel in various aspects crucial for
enhancing microscopy imaging experiments. In this sec-
tion, we will introduce fundamental machine learning
concepts and highlight learning strategies well suited for
microscopy imaging tasks.
Machine learning involves algorithms that learn pat-

terns from data to make predictions without explicit pro-
gramming. It falls under the umbrella of artificial intelli-
gence, aiming to imitate intelligent behaviour (Figure 2A).
Through a training process, the algorithms tune the
parameters of a specific image processing model to per-
form one particular task. Thus, machine learning practice
requires training data, validation data and test data. The
latter two datasets are used to evaluate the performance of
themodel during and after the training, respectively. Upon
a positive quality evaluation result, the model can be used
in new unseen data to make the predictions (Figure 2B).
In supervised learning, the model is trained on matched
input and output examples, like images and labels, to
infer general mapping functions. Unsupervised learning
finds intrinsic structures within unlabelled data through
techniques like clustering. As a third training category,
self-supervised methods run with unlabelled data as they
derive supervisory features from natural characteristics of
the data itself.

A relatively simple but powerful machine learning
model is the support vector machine (SVM)4 (Figure 3).
SVMs excel at classification tasks such as identifying cell
types in images. SVMs plot each image as a point in a mul-
tidimensional feature space and tries to find the optimal
dividing hyperplane between classes. New images are clas-
sified based on which side of the hyperplane their features
fall on. SVMs have good generalisation ability provided
that the features extracted from the classes are descrip-
tive enough as to characterise them. In microscopy, SVMs
are often used for initial proof-of-concept experiments to
classify images into binary categories like mitotic or non-
mitotic cells. Their simplicity makes SVMs convenient
for implementing basic feedback loops, for instance, trig-
gering high-resolution imaging when a specific cell type
is detected.
Deep learning models including convolutional neural

networks (CNNs) are state-of-the-art for complex image
processing tasks. CNNs are made up of artificial neu-
rons trained to recognise patterns in image data. One
of the most influential CNN architectures is the U-Net5
(Figure 3), which was first introduced in 2015. U-Nets
have encoder layers that capture hierarchical contextual
information and down sample the data, and decoder lay-
ers which rebuild the information back into a detailed
map using information from the encoder path passed
through the skip connections. Compared to SVMs, U-
Nets can handle raw images by automatically extracting a
rich feature representation, and therefore, it performs bet-
ter on datasets with increased complexity. In microscopy,
U-Nets excel at segmentation tasks like identifying and
delineating different cell types, nuclei or components in
the image. Their ability to recognise complex structures
based on contextual understanding of images makes U-
Nets well suited for implementing data-driven microscopy
feedback loops. For example, U-Nets could be used to alter
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MORGADO et al. 5

F IGURE 3 Comparative analysis of machine learning algorithms in data-driven microscopy. Comparison of various machine learning
(ML) algorithms employed in data-driven microscopy, delineating their respective advantages, limitations, and applications for image
analysis tasks.

illumination ormagnification when specific cellular struc-
tures are detected.
An additional powerful class of machine learning

approaches gaining traction in microscopy are generative
adversarial networks (GANs)6 (Figure 3). GANs contain
paired generator and discriminator networks trained in
an adversarial manner. The generator creates synthetic
images to mimic real data, while the discriminator classi-
fies images as real or fake. Competing drives the generator
to produce increasingly realistic outputs. In microscopy,
GANs are applied for data augmentation, image enhance-

ment, modality translation, and simulation. For instance,
GANs can create diverse training data, convert brightfield
to fluorescence-like images, or simulate images under dif-
ferent conditions. A major benefit of GANs is that it can
be unsupervised and thus no labelled or paired datasets
are needed to train them. For smart microscopes, GANs
could enable preprocessing loops to improve image qual-
ity before analysis and provide an estimate of variability or
confidence in the generated results to prioritise tasks. They
also hold promise for predicting nanoscale information to
guide superresolution imaging.
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6 MORGADO et al.

Machine learning provides data-drivenmicroscopywith
flexibility and empowers faster and more adaptative imag-
ing workflows. Trained models extract relevant informa-
tion from images that is then used to optimise data col-
lection by adapting microscope parameters accordingly in
real time. This transformative potential has been demon-
strated across diverse imagingmodalities, as highlighted in
the next section.

4 APPLICATIONS OFMACHINE
LEARNING POWERED REACTIVE
MICROSCOPY

Artificial intelligence is driving the development of intel-
ligent microscopes that can sense, analyse and adapt in
real time. Recent innovations have demonstrated reactive
imaging systems across various modalities, ranging from
widefield to super-resolution microscopy. In this section,
we will discuss the key applications of machine-learning-
powered reactive microscopy, highlighting the potential of
these systems to revolutionise optical imaging.
MicroPilot,7 a software that provides a framework for

data-driven microscopy, is one of the pioneering works
in the field. The system is based on LabView and C for
image analysis and can be implemented in various com-
mercial systems. It is also compatible withMicro-Manager,
an open-source tool widely used to control microscopes.
The MicroPilot study provides different examples of how
cells can bemonitored in low-resolutionmode, and images
can be analysed using a SVM trained to classify differ-
ent mitotic stages. A complex experiment is triggered
once a cell in a desired stage is detected. After comple-
tion, the imaging returns to scanning mode until the next
detection. To demonstrate its capacity, an experiment was
conducted to study the potential role of a specific protein
in the condensation of mitotic chromosomes. The exper-
iment monitored 3T3 cells and it triggered Fluorescence
Recovery After Photobleaching (FRAP) acquisitions upon
identification of each prophase cell. Half of the nucleus
was selectively photobleached, and the signal recoverywas
monitored. It is worth noting that this set of experiments
was completed in just four unattended nights, generating
results equivalent to what would have taken a full month
for an expert user.
Building on this concept, MicroMator8 was developed to

offer an open-source toolkit for reactive microscopy using
Python and Micro-Manager. It includes pretrained U-Net
models to segment yeast and bacteria cells. Researchers
applied MicroMator to selectively manipulate targeted
cells during live imaging. One noteworthy example
involves an optogenetically driven recombination exper-
iment in yeast. In this experiment, genetically modified

yeast cells are selected for exposure to light, triggering
recombination and the subsequent expression of a pro-
tein that arrests growth together with a fluorescent protein
for monitoring purposes. To generate islets of recom-
bined yeast, MicroMator’s algorithm individually selects
yeast cells at a minimum distance apart, tracks them
and repeatedly triggers light exposure on them, increas-
ing the chances of recombination and, thus, the amount
of relevant information in the acquired data.
In addition to enhancing data information density, the

image quality can be dynamically optimised based on the
sample properties. One example of this is the learned adap-
tive multiphoton illumination (LAMI)9 approach, which
uses a physics-informed machine learning method to esti-
mate the optimal excitation power tomaintain a good SNR
across depth in multiphoton microscopy. This becomes
particularly relevant for nonflat samples with varying scat-
tering regions. Given the surface characteristics of the
sample, LAMI selectively adjusts the excitation power
where needed, effectively expanding the imaging volume
by at least an order of magnitude, while minimising the
potential for photodamage effects. The effectiveness is
also demonstrated by observing immune cell responses
to vaccination in a mouse lymph node with live intravi-
talmultiphoton imaging. Furthermore, LAMI significantly
reduces computation time by incorporating a machine
learning-based method instead of a purely physics-based
approach. The computation time is reduced from approx-
imately one second per focal time point to less than
one millisecond.
In a study conducted by Suliana Manley and her team,

they aimed to image mitochondria division using Struc-
tured Illumination Microscopy while minimising photo-
damage effects.10 To achieve this, they trained a U-Net to
detect spontaneous mitochondria divisions in dual-colour
images labelling mitochondria and the mitochondria-
shaping dynamin-related protein 1. The model was inte-
grated into the imaging workflow to trigger interchange-
ably the acquisition mode from a slow imaging rate,
suitable for live-cell observation, to a faster imaging rate,
enabling the collection of higher time-resolved data of
mitochondrial fission. Interestingly, the similarity in the
morphological characteristics and protein accumulation
at fission sites allowed the network to be repurposed for
detecting fission events in the bacteria C. crescentus with-
out additional training. The research team quantitatively
assessed and compared photobleaching decay among the
slow, fast and event-driven acquisitions. When compared
to the fast mode, they observed a significant reduction in
photobleaching using the event-driven acquisition mode,
thereby extending the duration of imaging experiments. As
expected, this reduction is not as big aswith the slow acqui-
sition mode, but it comes with the benefit of capturing the
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MORGADO et al. 7

event with higher temporal resolution and thus the mea-
surement of an average smaller constriction diameters that
would have been otherwise missed.
Lastly, the work of Flavie Lavoie-Cardinal’s research

group focuses on capturing the remodelling process of den-
dritic F-actin, transitioning from periodic rings to fibres,
within living neurons with STED imaging.11 They monitor
cells with confocal microscopy based on which synthetic
STED images are generated, considerably reducing photo-
damage effects. For this, they employ a task-assisted gen-
erative adversarial network (TA-GAN). TA-GAN’s training
is strengthen by also considering the error of actin ring and
fibres segmentation in the synthetic images. During acqui-
sition, the system estimates the uncertainty of the model
predicting synthetic images to decide whether to initiate a
real STED image acquisition and fine-tune the generative
model if needed. This allows to track actin remodelling in
stimulated neurons at high accuracy and resolution. Their
results illustrate that this strategy can potentially reduce
the overall light exposure by a significant margin, up to
70% and importantly, they manage to acquire biologically
relevant live superresolution time lapse images for 15 min.
By integrating machine learning into the microscopy

workflow, researchers have showcased techniques to
enhance data quality and quantity while minimising
phototoxicity. The applications highlighted in this sec-
tion demonstrate the transformative potential of machine
learning-powered microscopes across diverse imaging
modalities and biological questions. As machine learn-
ing methods and computational power continue advanc-
ing, we can expect even more breakthroughs in intelli-
gent microscopy, bringing us closer to the goal of fully
automated, optimised imaging platforms that accelerate
biological discovery.

5 CONCLUSIONS AND OUTLOOK

Data-driven microscopy has demonstrated impressive
capabilities in optimising illumination, modality switch-
ing, acquisition rates and event-triggered imaging. These
approaches improve image acquisition’s efficiency and
information content, enabling studying dynamic biolog-
ical processes across different scales. Intelligent micro-
scopes offer new experimental possibilities, from observ-
ing rare neuronal activity at the nanoscale resolution to
studying immune cell dynamics in tissues.
However, realising the full potential of data-driven

microscopy requires addressing technical and practical
challenges. One major limitation is the need for robust
and accurate machine learning models, especially when
dealing with small microscopy datasets. Expanding open-

source repositories of annotated images and simulations
can facilitate the development and validation of new
algorithms. Additionally, incorporating unsupervised and
self-supervised techniques shows promise in overcoming
the scarcity of labelled data.
Another critical aspect is the design of microscope hard-

ware optimised for data-driven imaging. Retrofitting anal-
ysis and control modules into traditional systems is com-
mon, but purpose-built instrumentation that integrates
software, optics, detectors and automation is essential. For
example, spatial light modulators can enable rapid adapt-
able illumination for optimal signal-to-noise ratio across
different samples. On the detection side, high-speed, low-
noise cameras or point-scanning systems tailored for live
imaging can enhance acquisition speeds.
In order to increase the use of data-driven microscopy

software, it needs to bemademore user-friendly and acces-
sible. This can be achieved by creating simplified interfaces
for designing and executing reactive imaging experiments,
allowing nonexperts to take advantage of these advanced
methods. Expanding open-source platforms like Micro-
Manager will encourage community contributions and
drive innovation. Additionally, package managers that
facilitate the sharing and installation of pretrained mod-
els can help overcome barriers in deploying machine
learning solutions.
As data-driven microscopy moves beyond proof-of-

concept studies, ensuring the robustness and reproducibil-
ity of autonomous microscopes becomes crucial. Main-
taining image quality control and detecting failures during
unsupervised operation for extended duration is challeng-
ing. Detailed performance benchmarking across labora-
tories using standardised samples can help identify best
practices. While this approach can be a great asset in min-
imising user bias, a selection bias in decision making can
still arise. Here, extensive validation of machine learning
predictions and adaptive decisions is required to build trust
in intelligent systems.
Data-driven microscopy represents a new era for optical

imaging, overcoming inherent limitations through real-
time feedback and automation. Intelligent microscopes
have the potential to transform bioimaging by opening
up new experimental possibilities. Pioneering applications
demonstrate the ability to capture dynamics, rare events,
and nanoscale architecture by optimising acquisition on-
the-fly. While challenges in robustness, accessibility, and
validation remain, the future looks promising for micro-
scopes that can sense, analyse, and adapt autonomously.
We envision data-driven platforms becoming ubiquitous
tools that empower researchers to image smarter, not just
faster. The next generation of automated intelligent micro-
scopes will provide unprecedented spatiotemporal views
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into biological processes across scales, fuelling fundamen-
tal discoveries.
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