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This Microtubule Does Not Exist: Super-Resolution
Microscopy Image Generation by a Diffusion Model

Alon Saguy, Tav Nahimov, Maia Lehrman, Estibaliz Gómez-de-Mariscal,
Iván Hidalgo-Cenalmor, Onit Alalouf, Ashwin Balakrishnan, Mike Heilemann,
Ricardo Henriques, and Yoav Shechtman*

Generative models, such as diffusion models, have made significant
advancements in recent years, enabling the synthesis of high-quality realistic
data across various domains. Here, the adaptation and training of a diffusion
model on super-resolution microscopy images are explored. It is shown that
the generated images resemble experimental images, and that the generation
process does not exhibit a large degree of memorization from existing
images in the training set. To demonstrate the usefulness of the generative
model for data augmentation, the performance of a deep learning-based
single-image super-resolution (SISR) method trained using generated
high-resolution data is compared against training using experimental
images alone, or images generated by mathematical modeling. Using a few
experimental images, the reconstruction quality and the spatial resolution of
the reconstructed images are improved, showcasing the potential of diffusion
model image generation for overcoming the limitations accompanying
the collection and annotation of microscopy images. Finally, the pipeline
is made publicly available, runnable online, and user-friendly to enable
researchers to generate their own synthetic microscopy data. This work
demonstrates the potential contribution of generative diffusion models for
microscopy tasks and paves the way for their future application in this field.
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1. Introduction

Deep learning algorithms have been
extensively used in the past decade to
solve various microscopy challenges.[1–7]

These algorithms outperform traditional
computer vision methods in terms of
reconstruction quality, analysis time, and
more; however, deep learning solutions
are hungry for data. Nowadays, to train
a model, one should typically acquire
and annotate thousands and sometimes
even millions of images, a highly time
and resource consuming process. An
alternative approach is to produce syn-
thetic data by developing mathematical
models that approximate the structure
of the biological specimen.[1,3,7–9] How-
ever, tuning the model parameters is a
cumbersome and fundamentally imper-
fect process that leads to non-realistic
features in the synthetic images due to
parameter estimation errors and model
inaccuracies.
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Recently, the field of generative models has seen a significant
surge in terms of both development and application.[10–13] Gen-
erative models have moved far beyond their initial application
in producing artificial images and are now being used to create
synthetic datasets that can effectively mimic real-world data in
diverse domains.[14] Two major contributors to this advancement
have been Denoising Diffusion Probabilistic Models (DDPM)[10]

and Denoising Diffusion Implicit Models (DDIM).[13] DDPM
and DDIM offer a dynamic approach for the generation of syn-
thetic data, relying on stochastic processes to create new images
that still capture the inherent statistical behavior of the training
dataset.

The capacity of diffusion models to accurately create realis-
tic visual data is profoundly impacting many computer vision
applications,[15] including microscopic imaging. Notably, acquir-
ing high-quality large training datasets for microscopy is sig-
nificantly harder than acquiring natural images, because of the
complex experimental setups and the extensive sample prepa-
rations. Indeed, several studies already incorporate diffusion
models to microscopy to reconstruct 3D biomolecule structures
in Cryo-EM images,[16] predict 3D cellular structures from 2D
images,[17] or design drug molecules,[18] among others.

Here, we propose the application of generative diffusion mod-
els in the field of super-resolution microscopy. First, we show
the ability of diffusion models to generate realistic, high-quality,
super-resolution microscopy images of microtubules and mito-
chondria. Then, we assess the capacity of the models to learn
the intricate nature of the data domain by validating that the
network rarely memorizes images from the training data. Next,
we utilize the generated dataset to train a single-image super-
resolution (SISR) deep learning model and show superior recon-
struction quality compared to the same model trained on model-
based simulated data or even on experimental data. The diffusion
model approach proposed here is publicly available[19] on the Ze-
roCostDL4Mic platform,[20] enabling non-expert researchers to
benefit from it.

2. Results

We base our work on a previously reported[21] diffusion model
which we adapt to super-resolution microscopy. We trained two
diffusion models on different biological samples, microtubules,
and mitochondria. For the microtubule dataset, we used 7 images
sourced from a publicly available database (ShareLoc.xyz),[22,23]

where each image size is 1340 × 1340 pixels2 (corresponding to
53.6 × 53.6 μm2). Since the data in ShareLoc is stored as a list of
localizations per frame, we converted the localization lists of our
training data to 2D localization histograms with bin size equal to
the super-resolution pixel size (40 × 40 nm2). Furthermore, we
split each image into patches using sliding window of 256 × 256
pixels with 128 pixel overlap in each dimension, and transformed
them using random horizontal flips and rotations of 90, 180, and
270 degrees to augment the training data. The augmentation step
yielded a total of 2 000 training patches (250 unique patches +
augmentations) for the microtubule training set.

The mitochondria dataset is composed of 10 stimulated emis-
sion depletion (STED) microscopy images. We split the mito-
chondria images of size 4096 × 4096 pixels2 (corresponding to
122.68 × 122.68 μm2) into patches of 256 × 256 pixels2. Since

many patches in the mitochondria dataset do not contain any
structure, we used manually generated masks to filter out empty
patches from our database. Finally, we obtained 1150 training
patches for the mitochondria data and augmented them to get
≈8000 training patches.

The images generated by our DDPM qualitatively resemble
the training data used for the training, as can be clearly seen
in the examples in Figure 1. For an additional quantitative simi-
larity comparison see dataset similarity quantification section in
the supporting information. To validate that our model does not
memorize images, namely, copy existing images from the train-
ing set and generate them as network outputs, we calculated the
maximal value of the normalized cross-correlation between every
generated image (a total of 50 images) and all augmented patches
used for training.

The cross-correlation calculation considered rotated, scaled,
and translated versions of the training images, and same-size
patches were used. The maximal value we got was 0.345 (0.485)
for the synthetic microtubule (mitochondria) images. The mean
value was 0.336 (0.211) for the microtubules (mitochondria)
images. For benchmarking, we repeated this process with 50 ex-
perimental images from a different dataset, which yielded a mean
value of 0.372 (0.186) and a max value of 0.483 (0.412) for the
microtubule (mitochondria) data. The cross-correlation values
are similar for experimental microtubule images from another
dataset (imaged in similar conditions) and for the microtubule
images that were generated by our diffusion model, showing the
expected variability between different and independent datasets.
In the case of mitochondria images, the cross-correlation val-
ues were slightly higher than those obtained when comparing
with images from a different experimental technique, possibly
implying a minor bias in the generated data toward the training
samples.

To visualize the most similar images in order to rule-out mem-
orization, we overlaid each generated image with the correspond-
ing training image that obtained the highest cross-correlation
score. Figure 2 shows four such examples; the novelty of our gen-
erated data with respect to the training data is apparent.

Next, we tested the applicability of our generated data to im-
prove the performance of a deep learning model for single-image
super-resolution. Specifically, we used our generated data to train
the Content-Aware Restoration (CARE)[1] model, aiming to trans-
form a low-resolution image to a high-resolution image based
on prior knowledge of image-statistics. Notably, obtaining single-
image-based super-resolution algorithmically is yet an unsolved
problem in microscopy, with results strongly dependent on the
prior information provided, and is no match to experiment-
based super-resolution microscopy methods (SMLM, STED,
SIM, etc.).[24–27] Nevertheless, we use this task to demonstrate
the potential of diffusion model-based data generation in virtual
super-resolution microscopy imaging.

We trained CARE models for both biological samples using
1) randomly oriented sinusoidal synthetic microtubule filaments
(see section 2.5.1 in the supplementary file of CARE manuscript);
2) images of microtubules or mitochondria generated by our dif-
fusion model; 3) experimental images of microtubules or mito-
chondria used to train our diffusion model. During the training
stage, we obtained the ground truth image in super-resolution
either by simulation or from images reconstructed by one of the
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Figure 1. Qualitative comparison of experimental microscopy data versus data generated using our generative diffusion model. a) Example synthetic
images of microtubules (alpha-tubulin – Alexa647) and mitochondria (TOM 22 – Alexa647) generated by our diffusion model. b) Example experimental
super-resolution images, used as training data. Scale bars = 2.5 μm.

existing super-resolution methods (either SMLM or STED); next,
we obtained low-resolution images by forward passing the high-
resolution images through a model of our optical system (see
methods section for more details). Ultimately, we used these low-
resolution – high-resolution image pairs to train CARE. We tested
CARE on 10 microtubule low-resolution – high-resolution image
pairs of size 1024 × 1024 pixels2, that were not used for training.

Visually, the CARE model trained on microtubules generated
by the diffusion model yielded a better reconstruction in com-
parison the CARE model trained on microtubules generated by
a mathematical model (Figure 3). To quantify the improvement,
we have analyzed the spatial resolution we obtained in both re-
constructions using the Fourier Ring Correlation (FRC) plug-in
for ImageJ.[28] In brief, FRC is a similarity measure that seeks
the maximal spatial frequency in which the reconstructed im-
age and the ground truth image are correlated up to a predefined
threshold. The similarity is quantified by the normalized cross-
correlation between the Fourier transforms of both images in-

side a torus with increasing radius. A high cross-correlation value
within the torus indicates high similarity between the images, in
the corresponding spatial frequency band.

The mean spatial resolution of the reconstructed images, as
quantified by FRC using a 1/7 threshold[28] when training on mi-
crotubule images generated by our diffusion model, was 115 nm
with a standard deviation of 16 nm, while the mean spatial resolu-
tion obtained when training on synthetic microtubules generated
via a mathematical model was 140 nm with a standard deviation
of 21 nm.

Finally, we report the mean peak signal-to-noise ratio (PSNR),
normalized root mean squared error (NRMSE), and multi-scale
structural similarity index measure (MS-SSIM)[29] similarity met-
rics between 30 reconstructed images and the corresponding
ground truth images (see Table 1). The CARE model trained
on diffusion model outperformed the CARE model trained on
mathematical model based synthetic data on all three quanti-
tative measures. These results demonstrate the advantage of

Figure 2. Overlay between each reconstructed image and the training image with highest resemblance (maximal cross-correlation score). Purple marks
generated data, green marks the closest training sample, and white marks overlap between the two images. Our diffusion models do not exhibit a large
degree of memorization of structures from the training images. Scale bars = 2.5 μm.
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Figure 3. Performance of CARE trained on synthetic microtubule images generated by a mathematical model versus training on microtubules generated
by our diffusion model. a) Left to right: widefield image, CARE reconstruction when trained on mathematical simulations, CARE reconstruction when
trained on our synthetic data, and ground truth. Scale bar = 5 μm. b) Regions of interest (marked by yellow squares in (a)), yellow arrows mark areas
in which CARE trained on our data outperformed the previous method. c) Left: overlay between CARE trained on mathematical simulations (red) and
the ground truth (green). Right: overlay between CARE trained on our diffusion model-based synthetic data (red) and the ground truth (green). Scale
bar = 1 μm.

using synthetic simulated data generated by our diffusion model
in comparison to the mathematical model of microtubules.

Notably, microtubule images can be simulated with rela-
tively high fidelity by a variety of well-established mathematical
models.[30] However, for an arbitrary type of biological specimen,
it is not easy to obtain a simple mathematical model describ-
ing its morphology. Therefore, the most remarkable feature of
diffusion model-based data generation is the ability to generate

Table 1. Quantitative comparison of the reconstructions obtained by CARE
models trained on different microtubule datasets. We report the mean and
standard deviation of PSNR, NRMSE, and MS-SSIM over the microtubule
test set composed of n = 10 images.

CARE training data Mean PSNR Mean NRMSE Mean MS-SSIM

Mathematical model 15.859 ± 0.2 1.839 ± 0.18 0.9985 ± 16 · 10−5

Diffusion model 18.734 ± 1.41 1.3352 ± 0.24 0.9992 ± 29 · 10−5

synthetic data from non-mathematically- describable biological
specimens.

We demonstrate this ability by training our diffusion model
on STED images of mitochondria (Figure 4). Unlike for mi-
crotubules, there is no available mathematical model to gener-
ate mitochondria images. Therefore, we compare CARE’s recon-
struction versus a model trained on the same experimental data
used for training the diffusion model. Moreover, we also explored
other scenarios where we combined the generated images with
the experimental data at hand, or generated a much larger num-
ber of unique samples using the diffusion model than the num-
ber of experimental samples.

We compared the performance on a test set of 30 mitochon-
dria images of size 1024 × 1024 pixels2 using four CARE mod-
els: 1) CARE trained on 1150 experimental patches (before aug-
mentation); 2) CARE trained on 1150 generated training patches
(before augmentation); 3) CARE trained on both the experi-
mental patches and the generated patches; 4) CARE trained on
6000 generated patches (before augmentation). The testing set is

Small Methods 2024, 2400672 © 2024 The Author(s). Small Methods published by Wiley-VCH GmbH2400672 (4 of 8)
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Figure 4. Performance of CARE trained on mitochondria generated by our diffusion model. a) Left to right: widefield image, CARE reconstruction when
trained on our synthetic data, and ground truth. Scale bar = 8 μm. b) Region of interest; yellow arrow marks a subtle feature not visible in widefield
imaging, which is made visible in our reconstruction. Scale bar = 2 μm.

composed of 10 STED split to images of size 1024 × 1024 pixels2,
corresponding to 30.67 × 30.67 μm2.

The quantitative comparison, shown in Figure 5 and Table 2,
is based on PSNR, NRMSE, MS-SSIM, and FRC evaluation met-
rics. According to the results, when training a model using a
small number of samples, the quantitative results are similar,
for example mean PSNR of 27.26 for the small synthetic dataset
compared to 27.11 for the experimental dataset. However, diffu-
sion models could serve as additional data augmentation for the
experimental data, namely, one could generate as many new syn-
thetic images as one desires. Indeed, we demonstrate an im-
provement in all evaluation metrics when using a much larger

number (6000 before augmentation) of synthetic images for the
training. Lastly, we also tested a combination of the small syn-
thetic dataset and the experimental dataset.

3. Discussion

In this work, we demonstrate the potential of diffusion mod-
els to generate large super-resolution microscopy datasets by re-
lying on a relatively small number of super-resolution images.
Given only 7 (10) microtubule (mitochondria) images we man-
age to generate realistic images that look different from the orig-
inal training data. Importantly, existing work in this field[31,32]

Figure 5. Quantitative comparison of CARE models for mitochondria over n = 30 samples. Boxes include data points inside the [25th,75th] percentile
range, horizontal line marks the median and x marks the mean value. Synth small (blue) marks CARE trained on 1150 synthetic patches (before aug-
mentation) generated by our diffusion model. Synth large (orange) marks CARE trained on 6 000 synthetic patches (before augmentation). Experimental
(gray) marks CARE trained on 1150 experimental patches (before augmentation). Combined (yellow) marks CARE trained on the combination of 1150
synthetic patches and 1150 experimental patches (before augmentation).
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Table 2. Quantitative comparison of the reconstructions obtained by CARE models trained on different mitochondria datasets. We report the mean
PSNR, NRMSE, MS-SSIM, and FRC over the mitochondria test set composed of 10 images.

CARE training data Mean PSNR Mean NRMSE Mean MS-SSIM FRC [nm]

Small synthetic dataset 27.26 ± 2.19 0.51 ± 0.11 0.9981 ± 1.2 · 10−3 117 ± 10

Experimental dataset 27.11 ± 2.15 0.53 ± 0.19 0.9981 ± 1.5 · 10−3 114 ± 15

Large synthetic dataset 28.10 ± 2.67 0.47 ± 0.15 0.9998 ± 1.5 · 10−3 100 ± 25

Combined dataset 27.48 ± 2.00 0.50 ± 0.14 0.9998 ± 1.2 · 10−3 109 ± 14

has shown that training diffusion models on smaller dataset in-
crease the possibility the model will memorize the training set.
Here, we report training on as little as 7 images (split into 250
patches before augmentations) without memorization of large
structural features from the training data. Two possible explana-
tions are the fact that we could generate thousands of patches
for training out of those images, or the relatively high redun-
dancy of information in microscopy images compared to natural
images.

Next, we trained a single-image super-resolution deep learning
model, namely CARE, to convert low resolution microscopy im-
ages into high-resolution images. Our results show that combin-
ing synthetic and experimental images in the model training im-
proves model performance. Additionally, when we trained CARE
model on more synthetic images than the number of experimen-
tally acquired samples, we still managed to improve the perfor-
mance, even beyond the CARE model trained on the combined
dataset. Nevertheless, recent work[33,34] states that deep-learning
models that are trained on purely synthetic data, created by gener-
ative AI models, might collapse to a relatively narrow distribution
of observations due to over-representation of certain structures
in the generative model training data. An interesting open ques-
tion for future investigation is – given that the diffusion model
can generate an arbitrarily large number of different images, at
which point does adding new generated images not contribute
anymore to performance? The answer will likely be sample and
task dependent.

Creating synthetic images of biological data that are highly re-
alistic and representative of the original data has important im-
plications, especially for downstream tasks that do not require
complicated annotation, or any annotation at all. For example, dif-
fusion models enable the generation of super-resolution datasets
that could be transformed to low-resolution observations by for-
ward passing through an optical model of the imaging system;
then, one may perform supervised model training without the
need for extensive experimental data acquisition, which is often a
limiting factor. The contribution of our method is particularly rel-
evant for the general case where no simple mathematical model
is available for synthetic image generation.

Although this work demonstrates the potential of a genera-
tive diffusion model in the task of single-image super-resolution,
the applicability of such a technique for microscopy is naturally
much broader. Numerous potential applications exist, including
denoising, multi-image super-resolution, cross-modality imag-
ing, live-cell dynamic imaging, and more. On the other side,
quantitative evaluation of biological image data generation in the
lack of annotated images is still an open question in the field that
requires further work and consensus.

Finally, we share an easy-to-use notebook via the
ZeroCostDL4Mic[20] platform to enable researchers to repli-
cate our pipeline and harness diffusion model capabilities. We
also distribute the pretrained models that allow the generation of
data similar to the data presented in this work. Of note, training
diffusion models is time consuming due to the large number of
stochastic operations involved in the learning process.

In light of the encouraging results obtained from this study,
future research should continue to focus on further optimizing
and evaluating diffusion models for generating more types of
synthetic microscopy data and on finding the applications where
these capabilities are most impactful. Furthermore, due to the
capacity of diffusion models to create virtual representations of
nanoscale cellular structure, they can potentially predict prospec-
tive multi-structural spatial relationships that will guide observa-
tions and discovery in the field of microscopy. The emergence of
generative models for microscopy represents an exciting phase
for bio-medical research and holds promising potential for ad-
vancements in the near future.

4. Experimental Section
Optical Model for Low-Resolution Image Generation: To train CARE on

low-resolution – high-resolution image pairs, high-resolution data were
used and passed it through a model of the optical system to obtain low-
resolution images. In this work, a simple model was used to simulate a
2D low-resolution image based on a 2D high-resolution image, described
below. Let the imaged structure be depicted by S(x, y) and let H(x, y), the
point spread function (PSF) of the optical system, be modeled as a 2D
Gaussian:

H (x, y) = A ⋅ e
− (x−x0)2

2𝜎2
x

− (y−y0)2

2𝜎2
y (1)

where A is the amplitude of the PSF, x0, y0 are the position of the emitter,
and 𝜎x = 𝜎y = 𝜎 represents the PSF width.

The low-resolution image formed at the camera plane is described by
the convolution of the imaged structure with the system’s PSF equation:

I (x, y) = P (S (x, y) ∗H (x, y)) + G (x, y) (2)

where * indicates a convolution operator, P(x, y) indicates a Poisson distri-
bution of the emitted number of photons, and G(x, y) indicates a Gaussian
noise simulating the camera read noise.

Ultimately, to obtain a low-resolution image Ĩ(x, y), the high-resolution
image I(x, y) is down sampled using 2D average pooling layer with window
size = 4:

Ĩ (x, y) = AvgPooling2D {I (x, y)} (3)

Small Methods 2024, 2400672 © 2024 The Author(s). Small Methods published by Wiley-VCH GmbH2400672 (6 of 8)

 23669608, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sm

td.202400672 by C
ochrane Portugal, W

iley O
nline L

ibrary on [03/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.small-methods.com


www.advancedsciencenews.com www.small-methods.com

Diffusion Model Architecture and Training Details: The network architec-
ture presented by Nichol, et al was adopted.[21] A single residual network
(ResNet) block was used and the input and output layers of the model
were changed to fit monochromatic data. To decrease the network size,
the channel multiplication between different layers of the ResNet, namely
was also changed, instead of (1, 1, 2, 2, 4, 4) multiplication (1, 1, 2, 2, 2, 2)
multiplication was used, where the initial channel number is 64. Addition-
ally, the number of diffusion steps was changed to 2000, set the batch size
to 10, the learning rate to 1e−5, and employed a cosine noise schedule. To
train the network, 7 publicly available (ShareLoc)[22] super-resolution lo-
calization lists of microtubule experiments, and 10 of mitochondria were
used STED images; then, a super-resolved image was generated from each
localization list scaled by a factor of 4 in comparison to the diffraction lim-
ited data, yielding pixel sizes of 40 and 30 nm for the microtubule and
mitochondria images, respectively.

Finally, the generative diffusion model was trained over 80000/20000
steps for 8 (2) h for the microtubule (mitochondria) datasets on a single
NVIDIA 32GB Titan RTX GPU. Ultimately, generation of a single super-
resolution image depends on the image size, e.g. 15 s for images of size
256 × 256 pixels2.

CARE Training Details: Super-resolution training data was obtained
based on 1) the mathematically simulated data presented in the CARE pa-
per; 2) the data generated by the trained diffusion model; or 3) the experi-
mental data from ShareLoc (for microtubules) or captured with STED mi-
croscopy (for mitochondria). To generate the low-resolution data needed
for training CARE network, a similar scheme as described in the CARE pa-
per was followed by convolving the super-resolution data with a Gaussian
microscope PSF model and adding Perlin noise, shot noise and Gaussian
noise. Importantly, It was sured that image generated by the two methods
described above shared properties such as signal-to-noise ratio, sample
size, etc. Finally, the CARE network was trained on 2 000 synthetic low-
resolution-high-resolution image pairs for the microtubule reconstruction
and 8 000 for the mitochondria reconstruction. To maintain a fair com-
parison between CARE trained on the data versus CARE trained on the
mathematically generated microtubules, the same training set size was
used in both cases.

Cell Culture: U2-OS cells for mitochondrial immunostaining were cul-
tured in DMEM/F12 media supplemented with 10% fetal bovine serum
(FBS) (Corning, USA), 1% (v/v) penicillin-streptomycin (Thermo Fisher
Scientific, Germany) and 5% (v/v) Glutamax (Thermo Fisher Scientific,
Germany). The cells were incubated at 37°C and 5% CO2 and were pas-
saged every 2–3 days or when they were 80% confluent.

Immunostaining of Mitochondria: U2-OS cells were seeded onto fi-
bronectin (Sigma-Aldrich, Germany) coated 8-well chambered coverglass
(Sarstedt, Germany) at an amount of 1.5 · 104 cells per well and were in-
cubated overnight at 37°C and 5% CO2. The cells were fixed with 4% (v/v)
formaldehyde (FA) (Sigma–Aldrich, Germany) and 0.1% (v/v) glutaralde-
hyde (Sigma–Aldrich, Germany) in pre-warmed 1x phosphate buffer saline
(PBS) at 37°C for 20 min. The cells were washed with 1x PBS once and
treated with sodium borohydride (a pinch) dissolved in 1 mL 1xPBS for
7 min (per coverglass). The sample was then washed thrice with 1x PBS.
The sample was incubated for 10 min in immunofluorescence (IF) buffer
(10% (v/v) FBS (Corning, USA) and 0.1% (w/v) Saponin (Sigma–Aldrich,
Germany)). After this, the sample was incubated with primary antibody
(TOM20, 1:500 (Rabbit TOM20 (sc-11415, Santa Cruz, USA))) dissolved
in IF buffer for 1.5–2 h at room temperature (RT) with shaking. This was
followed by washing thrice with 1x PBS and then the secondary antibody
(Goat anti-Rabbit Abberior Star 635P at 1:1000 dilution (2.0012–007-2, Ab-
berior Instruments)) dissolved in IF buffer and incubated for 1.5–2 h at
RT with shaking. The sample was then washed thrice with 1x PBS and
post fixed with 4%(v/v) FA (Sigma–Aldrich, Germany) for 10 min at RT
followed by washing thrice with 1x PBS. The sample was then stored at
4°C in PBS for long-term and equilibrated to RT for an hour before starting
measurements.

STED Imaging: STED imaging was performed using an Abberior ex-
pert line microscope (Abberior Instruments, Germany) equipped with a
UPLXAPO 60x NA 1.42 oil immersion objective (Olympus Deutschland
GmbH, Germany). An excitation laser of 640 nm (7.7 μW at the back focal

plane) and a depletion laser of 775 nm (136.5 mW at the back focal plane)
were used for STED imaging, both pulsed at 40 MHz. Fluorescence was
collected in the spectral range of 650 –760 nm using an avalanche photo
diode (APD) with time gating enabled (0.75–8.75 ns). Pixel size was set to
15 nm with a line integration of 5, pixel dwell time of 5 μs and a pinhole of
0.81 airy units.
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