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Quantitative analysis in bacterial microscopy is often hindered
by diverse cell morphologies, population heterogeneity, and
the requirement for specialised computational expertise. To
address these challenges, mAIcrobe is introduced as an open-
source framework that broadens access to advanced bacterial
image analysis by integrating a suite of deep learning models.
mAIcrobe incorporates multiple segmentation algorithms, in-
cluding StarDist, CellPose, and U-Net, alongside comprehen-
sive morphological profiling and an adaptable neural network
classifier, all within the napari ecosystem. This unified plat-
form enables the analysis of a wide range of bacterial species,
from spherical Staphylococcus aureus to rod-shaped Escherichia
coli, across various microscopy modalities within a single envi-
ronment. The biological utility of mAIcrobe is demonstrated
through its application to antibiotic phenotyping in E. coli and
the identification of cell cycle defects in S. aureus DnaA mutants.
The modular design, supported by Jupyter notebooks, facilitates
custom model development and extends AI-driven image analysis
capabilities to the broader microbiology community. Building
upon the foundation established by eHooke, mAIcrobe repre-
sents a substantial advancement in automated and reproducible
bacterial microscopy.
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Introduction

Microscopy remains fundamental to microbial cell biology;
however, quantitative analysis of bacterial images presents
significant challenges. These include population heterogene-
ity, the small size of bacterial cells, morphological diversity
among species, and the range of imaging techniques em-
ployed. Manual analysis constitutes a major bottleneck, as it
is time-consuming, subjective, and susceptible to human error,
thereby limiting research throughput and reproducibility.
To overcome these limitations, we developed mAIcrobe, a
comprehensive framework for bacterial image analysis. It sup-
ports multiple bacterial species, various microscopy modali-
ties, and flexible, customisable analysis workflows. By inte-
grating various segmentation methods, quantitative morpho-
logical measurements, and an adaptable classification model,
mAIcrobe provides a powerful tool for a broad range of studies
in bacterial cell biology. We have made our work accessible
through the napari-mAIcrobe plugin, which is accompanied
by Jupyter notebooks (Table S1) to facilitate the training of
custom classification models usable within the user-friendly
napari ecosystem.
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Fig. 1. mAIcrobe workflow. After image acquisition, the napari-mAIcrobe plugin
facilitates analysis through a user-friendly interface for segmentation, morphological
measurements, and classification using a variety of pre-trained or custom models.

The field has seen several automated image analysis tools
tailored for bacterial images, from ImageJ (1) plugins like
MicrobeJ (2) to standalone software such as SuperSegger (3)
and Oufti (4). Our own contribution, eHooke (5), provided an
open-source solution for the semi-automated analysis of cocci,
particularly Staphylococcus aureus. Although eHooke was a
valuable tool for studying the cell cycle in spherical bacteria,
it was architecturally constrained, limiting its application to
other morphologies and making integration with new deep
learning models challenging. The rapid evolution of bioim-
age analysis, coupled with the broad adoption of the napari
ecosystem (6), presented a clear opportunity to engineer a
more powerful and extensible framework built on the modern
scientific Python stack.
We seized this opportunity to design mAIcrobe (Fig. 1), a next-
generation platform prioritising versatility and performance.
The design philosophy focused on overcoming morphological
constraints, enabling the selection of optimal segmentation al-
gorithms, and facilitating the rapid adaptation of deep learning
models to address emerging biological questions. The napari
framework was selected as the foundation for mAIcrobe due
to its modular architecture and interactive visualisation capa-
bilities, which align with these objectives.

Results

Developed within the napari plugin ecosystem, mAIcrobe
provides an intuitive and extensible platform for bacterial im-
age analysis. The framework integrates image segmentation,
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Fig. 2. mAIcrobe segmentation capabilities. The platform can perform segmentation for a variety of bacterial species, segmentation models, and microscopy modalities. a)
SIM image of S. aureus JE2 strain labeled with membrane dye NileRed, with cells segmented using a StarDist model. b) Phase-contrast image of Streptococcus pneumoniae
segmented with a U-Net trained via ZeroCostDL4Mic. c) Conventional fluorescence widefield microscopy of a Bacillus subtilis strain expressing FtsZ-GFP also segmented
using a U-Net trained via ZeroCostDL4Mic. All scale bars are 2 µm.

morphological measurement, and classification into a unified
workflow. Its modular design enables the selection of segmen-
tation models and classification strategies tailored to specific
experimental requirements (Table S2). A central feature of the
napari-mAIcrobe plugin is its support for real-time visualisa-
tion and dynamic parameter adjustment, facilitating optimisa-
tion of image processing across diverse bacterial species and
microscopy setups (Fig. S1). The following sections illustrate
these capabilities through selected biological applications.

Segmentation. mAIcrobe features a flexible segmentation en-
gine designed to accommodate diverse bacterial species and
microscopy modalities (Fig. 2 and Table S3). The framework
integrates several leading segmentation approaches, includ-
ing StarDist (7), CellPose (8), and custom U-Net (9) models
trained using the ZeroCostDL4Mic framework (10). This
multi-model strategy enables the selection of the most suitable
algorithm for specific experimental conditions and bacterial
morphologies, thereby ensuring high-quality segmentation.
Unlike tools limited to particular morphologies, mAIcrobe
supports the analysis of rod-shaped, spherical, and other bac-
terial forms within a single framework.
This versatility is demonstrated in several applications. In
structured illumination microscopy (SIM) images of S. au-
reus labelled with membrane dye NileRed, the StarDist model
achieves accurate cell boundary detection (Fig. 2 a)). For
phase-contrast microscopy of Streptococcus pneumoniae, U-
Net models trained with ZeroCostDL4Mic provide reliable
segmentation of cells (Fig. 2 b)). The framework also pro-
cesses conventional widefield fluorescence images, segment-
ing Bacillus subtilis expressing FtsZ-GFP (Fig. 2 c)). By
integrating these models within a single interface, mAIcrobe
eliminates the need to switch between software packages,
thereby streamlining the identification of optimal segmenta-
tion approaches.

Morphological Measurements. Beyond segmentation,
mAIcrobe performs quantitative morphological analysis
of bacterial cell properties across diverse experimental
conditions (Table S2). From segmented cells, the framework
extracts key morphological parameters, including cell
area, perimeter, and eccentricity, alongside multi-channel
fluorescence intensity measurements. This quantitative data
provides a solid basis for characterising cellular responses

to drug treatments or genetic modifications. To ensure
interoperability and support reproducible research, all results
can be readily exported to standard formats, such as CSV, for
downstream statistical analysis and visualisation.
A practical application is the detection and characterisation of
drug-induced morphological changes. For example, treatment
of wild-type JE2 S. aureus with PC190723 (11), an FtsZ in-
hibitor, induces a distinct phenotype. Cells become enlarged
and are arrested in the first stage of the cell cycle (13), a stage
typically associated with increased roundness. As illustrated
in panel a of Fig. 3, mAIcrobe accurately detects and quanti-
fies these morphological changes, underscoring its utility in
phenotypic drug screening.

Classification. A principal strength of mAIcrobe is its adapt-
able classification system, which is powered by a convolu-
tional neural network (CNN). This system is designed for
flexibility and can be fine-tuned to address a variety of bio-
logical questions, including cell cycle analysis and antibiotic
phenotyping.
The classification module employs a CNN architecture previ-
ously developed for cell cycle analysis of S. aureus (5). For
example, on images of S. aureus where the essential DNA
replication initiator protein DnaA (14, 15) was depleted using
CRISPR interference (CRISPRi) (12), mAIcrobe identified
altered cell cycle progression (Fig. 3 b)). This analysis re-
veals quantifiable differences in cell division timing, which
may provide new insights into the role of DnaA in cell cycle
regulation.
To support adaptation to diverse experimental conditions and
applications beyond cell cycle analysis, a codeless Jupyter
notebook (Table S1) is provided for straightforward model
retraining and fine-tuning. This approach lowers barriers to the
development of custom analysis pipelines. The adaptability
of the classification system is demonstrated in Fig. 4, which
shows the S. aureus cell cycle model retrained for antibiotic
phenotype detection in Escherichia coli (Fig. S2).

Discussion
mAIcrobe addresses key limitations in current bacterial im-
age analysis workflows by offering a unified framework that
integrates deep learning approaches with practical accessibil-
ity. Offering a variety of segmentation models constitutes a
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Fig. 3. Quantitative phenotyping with mAIcrobe. mAIcrobe is capable of iden-
tifying phenotypic variations in microbial cells. a) Morphological changes of S.
aureus cells treated with the antibiotic PC190723 (11), which leads to larger and
rounder cells. The histograms show cell area and eccentricity for control (green) and
PC190723 treated (yellow) JE2 S. aureus cells. b) Analysis of cell cycle progression
in a S. aureus strain following CRISPR interference-mediated knockdown of dnaA
expression (12). Cells are classified into three distinct cell cycle phases. Phase 1:
round cells with no discernable septa; Phase 2: cells that started to elongate with an
open septa; Phase 3: cells with fully closed septa. All scale bars are 1 µm.

substantial improvement over single-algorithm methods, as
demonstrated by comparative analysis across diverse bacterial
morphologies and imaging modalities. Although tools such as
eHooke have contributed significantly to the field, they remain
constrained by algorithm-specific limitations and morphologi-
cal restrictions, which reduce their broader applicability.

The integration of StarDist, CellPose, and custom U-Net mod-
els within mAIcrobe enables the selection of optimal seg-
mentation approaches for specific experimental conditions.
This flexibility is essential given the morphological diversity
among bacterial species and the range of microscopy tech-
niques used in contemporary microbiology. Validation across
S. aureus, E. coli, S. pneumoniae, and B. subtilis demonstrates
that the multi-model approach maintains high segmentation
accuracy while accommodating diverse cell shapes and imag-
ing protocols.
The adaptable classification system constitutes a key innova-
tion, facilitating the transition from fixed-purpose tools to cus-
tomisable analysis platforms. By offering accessible retrain-
ing protocols through Jupyter notebooks, mAIcrobe reduces
technical barriers that have previously limited the adoption of
machine learning in bacterial microscopy. The adaptation of
the model from S. aureus cell cycle classification to E. coli
antibiotic phenotyping demonstrates the framework’s capacity
to address diverse biological questions. Jupyter notebooks,
which can be used locally or via Google Colab, enable users
to retrain the classification model with minimal computational
expertise (Table S1).
The morphological measurement capabilities enable compre-
hensive quantitative profiling of bacterial phenotypes. This
functionality is particularly valuable for detecting morpholog-
ical changes indicative of key biological processes, as demon-
strated in analyses of DnaA depletion effects and antibiotic-
induced morphological alterations. The ability to export quan-
titative data in standard formats facilitates integration with
statistical analysis workflows and supports reproducible re-
search.
Integration with the napari ecosystem offers strategic advan-
tages for long-term sustainability and community adoption. In
contrast to standalone software requiring independent mainte-
nance and feature development, napari plugins benefit from
shared infrastructure, advanced visualisation capabilities, and
an active development community. This approach ensures that
mAIcrobe evolves in parallel with advances in the broader
image analysis field while maintaining compatibility with
complementary tools.

Conclusions
mAIcrobe offers a comprehensive set of computational tools
for bacterial microscopy analysis, delivering a unified solu-
tion to the fragmented landscape of existing software. The
principal innovation of the framework is its seamless inte-
gration of multiple segmentation algorithms with adaptable
classification models, enabling comprehensive analysis across
diverse bacterial species and experimental conditions without
requiring transitions between different software packages.
Empirical validation indicates that mAIcrobe’s multi-model
approach maintains high analytical performance while sub-
stantially expanding the range of addressable biological ques-
tions. Demonstrated applications, including the detection of
cell cycle defects in DnaA-depleted S. aureus and the charac-
terisation of antibiotic-induced morphological changes, high-
light the framework’s capacity to reveal biologically relevant
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Fig. 4. Adaptable classification model in mAIcrobe. a) SIM image of S. aureus
labeled with membrane dye NileRed. Orange, green, and purple numbers indicate
automatically classified cells in phases 1, 2, or 3, respectively, using mAIcrobe’s
pretained classification model. b) Synthetic image obtained by stitching together
multiple fields of view showcasing different drug treatments. mAIcrobe classification
model was fine-tuned to classify E. coli cells as control or showcasing the effects of
different antibiotics (mecillinam and nalidixic acid). Small crosses indicate classifica-
tion results (orange for control, green for mecillinam and purple for nalidixic acid).
Scale bars are 2 µm (S. aureus panel a) and 3 µm (E. coli in panel a and b).

phenotypes.
Integration with the napari ecosystem positions mAIcrobe as
a forward-looking solution that addresses both current analyti-
cal needs and future scalability requirements. By leveraging
napari’s extensible architecture and active development com-
munity, the framework ensures long-term sustainability and
seamless integration with complementary analysis tools. The
open-source implementation and accessible retraining proto-
cols broaden access to advanced image analysis capabilities,
potentially accelerating discovery across multiple areas of
bacterial cell biology.
With the growing demand for sophisticated analytical ap-
proaches to address complex biological questions, mAIcrobe
provides a robust foundation for next-generation bacterial
microscopy analysis. The modular design and extensible ar-
chitecture enable the incorporation of future methodological
advances while maintaining the accessibility and reliability
necessary for routine research. This combination of current
capability and future adaptability establishes mAIcrobe as a

valuable addition to the computational microbiology toolkit.
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Methods
Image acquisition. The datasets of S. aureus strains, JE2 (14),
BCBMS14 psg-RNAspy-2 and LCML1 (12) (Table S6) were
acquired in-house.
For the growth of BCBMS14 psg-RNAspy-2 and LCML1
overnight cultures of both strains were back-diluted 1:500
into 10 mL of fresh tryptic soy broth (TSB, Difco) media
containing 10 µg/ml chloramphenicol (Sigma-Aldrich) and
grown at 37 °C for 1 hour. After 1 hour, anhydrotetracycline
(aTc, Sigma-Aldrich) was added to the medium to a final con-
centration of 100 ng/ml. After another hour, a 1 mL aliquot
of each culture was incubated with 2.5 µg/mL NileRed (In-
vitrogen) for 5 min at 37 °C with shaking. The culture was
pelleted (10000 rpm for 1 min), supernatant was removed and
the pellet was resuspended in 30 µL of phosphate-buffered
saline (PBS, NaCl 137 mM, KCl 2.7 mM, Na2HPO410 mM,
KH2PO4 1.8 mM). One microliter of the resuspended cul-
ture was then placed on a thin layer of 1.2% (w/v) agarose
(TopVision Thermo Fisher Scientific) in PBS and imaged via
structured illumination microscopy (SIM).
For the growth of untreated JE2, an overnight culture was
back-diluted 1:200 into 10 mL of fresh TSB media and grown
at 37 °C until cells reached mid-exponential growth phase
(OD600 of 0.8). Afterwards, a 1 mL aliquot of culture was
incubated with 5 µg/mL NileRed (Invitrogen) and 1 µg/mL
Hoechst 33342 (Invitrogen) for 5 min at 37 °C with shak-
ing. Culture was then centrifuged, washed with 1 ml of 1:3
(vol/vol) TSB/PBS solution, and resuspended in 20 µL of the
same solution. Cells were mounted on microscope slides cov-
ered with a layer of 1.2% (w/v) agarose in PBS and imaged
via structured illumination microscopy (SIM).
SIM was performed using an Elyra PS.1 microscope (Zeiss)
with a Plan-Apochromat 63x/1.4 oil DIC M27 objective. SIM
images were acquired using three grid rotations, with a 34-µm
grating period for the 561-nm laser (100 mW) and 23 µm
grating period for the 405-nm laser (50 mW). Images were
captured using a Pco.edge 5.5 camera and reconstructed us-
ing ZEN software (black edition, 2012; version 8.1.0.484)
on the basis of a structured illumination algorithm, with syn-
thetic, channel-specific optical transfer functions and noise
filter settings ranging from 6 to 8.
The dataset of Pen6 S. pneumoniae strains was also acquired
in-house. Briefly, overnight cultures were back-diluted 1:50
into 5 mL of fresh C medium supplemented with yeast extract
(0.8% Difco Laboratories) (C+Y media). C medium was
prepared as described in (18). Cells were grown at 37 °C to
early exponential phase (OD600 0.2-0.3). A 1 mL aliquot of
the culture was centrifuged (10000 rpm for 1 min) and the
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pellet was resuspended in 30 µL of pre-C medium (18). Two
microliters of the resuspended culture were then placed on
a thin layer of 1.2% (w/v) agarose in pre-C (18) media and
imaged using a Zeiss Axio Observer microscope equipped
with a Plan-Apochromat 100x/1.4 oil Ph3 objective, a Retiga
R1 CCD camera (QImaging), a white-light source HXP 120
V (Zeiss) and the software ZEN blue v2.0.0.0 (Zeiss).

Biological image datasets. Datasets of B. subtilis express-
ing FtsZ-GFP (strain SH130, PY79Δhag ftsZ::ftsZ-gfp-cam
(19)), which was used to train a U-Net segmentation model,
and E. coli (strain NO34 (20)) exposed to various antibiotics,
which was used to train a classification network, are publicly
available in (17) alongside their annotations.
The dataset of Pen6 S. pneumoniae that was used to test and
train a U-Net segmentation model, was acquired in-house
and is available on Zenodo (https://doi.org/10.5281/zenodo.
17306839).
The S. aureus dataset containing untreated and PC190723
treated JE2 cells labeled with NileRed is publicly available in
(21). The same dataset alongside in-house acquired images of
BCBMS14 psg-RNAspy-2 was used to train and test a StarDist
segmentation model and can be found in Zenodo (https://doi.
org/10.5281/zenodo.17306839).
The dataset WT JE2 S. aureus cells labeled with NileRed and
Hoechst, used for validating morphometrics, is available in
Zenodo (https://doi.org/10.5281/zenodo.17306839).
The S. aureus dataset containing CRISPRi-depleted strain
(LCML1) and its respective control (BCBMS14 psg-RNAspy-
2) was used to test the pretrained S. aureus cell cycle classifica-
tion model. The dataset was acquired in-house and is available
on Zenodo (https://doi.org/10.5281/zenodo.17306839).
A comprehensive list of all biological datasets used in this
study can be found in Table S4.

Segmentation networks. The StarDist model used for S. au-
reus segmentation was trained using a dataset of untreated
(10 FoVs) and PC190723 treated (12 FoVs) JE2 S. aureus
labeled with NileRed.The training dataset is the dataset avail-
able in (21). The test dataset contains 3 FoVs of BCBMS14
psg-RNAspy-2 S. aureus strain labeled with NileRed (Table
S6) (12). Both the training and the test dataset are deposited
in Zenodo (https://doi.org/10.5281/zenodo.17306839). Train-
ing was performed on a Jupyter notebook, adapted from the
example notebooks provided by StarDist authors, that can be
found in the code repository of this work (Table S1).
The U-Net model used for S. pneumoniae and B. subtilis
segmentation was trained on an adapted ZeroCostDL4Mic 2D
U-Net notebook (10), that can be found in the code repository
of this work (Table S1). The U-Net model was trained to
identify background, cell edge, and cell interior. To obtain the
final label image, scikit-image’s (22) watershed segmentation
was used (23). First, a mask image is generated by performing
the binary union of the cell edge and cell interior. The input
to the watershed algorithm is the inverted mask alongside the
cell interiors as marker basins. The training and test datasets
of S. pneumoniae were obtained in-house and are available
on Zenodo (https://doi.org/10.5281/zenodo.17306839). The

B. subtilis training and test datasets are publicly available in
(17).
For both training datasets, data augmentation was performed
using image rotations and flips. The hyperparameters of each
model can be found in Table S5.

Classification network. The classification network trained on
E. coli data is a convolutional neural network with an archi-
tecture described in (5). This network was retrained using the
E. coli antibiotic phenotyping dataset from (17). The fields of
view pertaining to the control condition plus those correspond-
ing to exposure to mecillinam and nalidixic acid were split
into the DNA and membrane channels, and the membrane
channel was segmented using the CellPose cyto3 model (8).
Individual cell crops were extracted from the segmented fields
of view using mAIcrobe to generate the final dataset needed
for training and testing. In total, the training dataset contained
1164 E. coli cell crops while the test dataset contained 416
cells. The network was trained for 200 epochs with a batch
size of 32 and a learning rate of 0.001 and a validation split of
20%. Data augmentation was performed using Keras (24) Ran-
domRotation and RandomFlip preprocessing layers. These
layers, at training time only, perform random horizontal and
vertical flipping and random rotations between -180º and 180º.
Training was done using a Jupyter notebook (25) available in
our GitHub repository (Table S1).
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Notebook Link
StarDist2D training notebook https://github.com/HenriquesLab/mAIcrobe/blob/main/notebooks/StarDistSegmentationTraining.ipynb
U-Net2D training notebook https://github.com/HenriquesLab/mAIcrobe/blob/main/notebooks/U_Net_2D_Multilabel_ZeroCostDL4Mic_adapted.ipynb

CNN classification network training https://github.com/HenriquesLab/mAIcrobe/blob/main/notebooks/napari_mAIcrobe_cellcyclemodel.ipynb

Sup. Table S1. Jupyter notebooks available as part of mAIcrobe

Description Species Microscopy modality Reference
S. aureus datasets S. aureus SIM This study, (21)

S. pneumoniae U-Net dataset S. pneumoniae Widefield (phase contrast) This study
B. subtilis U-Net dataset B. subtilis Widefield (fluorescence) (17)

E. coli classification model dataset E. coli Widefield (fluorescence) (17)

Sup. Table S2. Experimental conditions for datasets used in this study.

Model Average IoU Recall Precision
StarDist S.aureus 0.999 0.994 0.872

U-Net S.pneumoniae 0.998 0.988 0.898
U-Net B.subtilis 0.923 1.00 0.840

Sup. Table S3. Performance metrics for the segmentation networks used in this study. Average Intersection over Union (IoU), Recall and Precision values were
calculated on the respective test datasets.

Name Description Link
JE2 WT treated with PC190723 Wild-type strain of S.aureus with PC190723 treatment https://zenodo.org/records/15169018

psg-RNASpy-2 and LCML1 S.aureus dnaA CRISPRi knockdown strain and its respective control https://doi.org/10.5281/zenodo.17306839
StarDist S.aureus dataset Training and test dataset for StarDist segmentation model https://doi.org/10.5281/zenodo.17306839

U-Net S.pneumoniae dataset Training and test dataset for U-Net segmentation model https://doi.org/10.5281/zenodo.17306839
U-Net B.subtilis dataset Training and test dataset for U-Net segmentation model https://zenodo.org/records/5550968

E.coli classification model dataset Training and test dataset for mAIcrobe classification model https://zenodo.org/records/5551057

Sup. Table S4. Datasets used in this study and their respective repository links

Organism Microscopy Network Train/test images Epochs Steps Image size Patch size Batch size Learning rate %Validation Augmentation Misc
S.aureus SIM StarDist 20/3 400 100 2430x2430 256x256 4 0.0003 15 Random flip and intensity changes grid 2, 32 rays

S.pneumoniae Phase Contrast U-Net 16/3 100 70 1392x1040 256x256 4 0.0003 10 VHFlip and 180 Finetuned from a S.aureus U-Net model
B.subtilis Fluorescence U-Net 7/3 100 6 1024x1024 512x512 4 0.0005 10 VHFlip and 180°rot Finetuned from a S.aureus U-Net model

Sup. Table S5. Hyperparameters for the segmentation networks used in this study.

Name Description Reference
Staphylococcus aureus

JE2 Derivative of community acquired MRSA (14)
BCBMS14 psg-RNASpy-2 JE2 ∆spa:Pxyl/tet03 −dcas9Spy containing psg-RNASpy-2 (12)

LCML1 JE2 ∆spa:Pxyl/tet03 −dcas9Spy containing psg-0001_dnaA (12)
Streptococcus pneumoniae

Pen6 PenR, unencapsulated laboratory strain; carries mosaic pbp alleles (26)

Sup. Table S6. Strains used in this study.
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Sup. Fig. S1. Example screenshot of the mAIcrobe napari plugin. In this screenshot, we showcase an image of B.subtilis cells being segmented using a U-Net model
loaded into the mAIcrobe plugin. The plugin’s segmentation interface is visible on the right side of the image, displaying various options and settings for segmentation,
that dynamically change according to the segmentation model chosen.
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Sup. Fig. S2. Confusion matrix for E. coli classification model. The confusion matrix shows the performance of the retrained mAIcrobe CNN on a test dataset of 416
cells.
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