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Deep learning has established itself as the state-of-the-art ap-
proach for segmentation in bioimage analysis. However, these
powerful algorithms present an intriguing paradox regarding
image resolution: contrary to intuition, lower-resolution im-
ages can yield superior performance for specific image analy-
sis carried out by deep learning. This phenomenon is particu-
larly significant in microscopy imaging, where high-resolution
acquisitions come with substantial costs in throughput, data
storage requirements, and potential photodamage to specimens.
Through systematic experimentation, we evaluate how varying
image resolution impacts deep learning performance in cellu-
lar image segmentation tasks. We trained popular architec-
tures on datasets downsampled to 6-50% of their original resolu-
tion, mimicking acquisitions at lower image magnification, and
compared their performance against models trained on native-
resolution images. Our results show that segmentation accuracy
either improves (by up to 25% of mean Intersection over Union
(IoU)) or experiences only minimal degradation (< 5% of mean
IoU) when using images downsampled by up to a factor of 4
(25% of the original resolution). This downsampling propor-
tionally increases information throughput while reducing data
storage requirements and inference time. With these findings,
we contribute systematic guidelines to deep learning practition-
ers in creating efficient experimental pipelines for image-driven
discoveries. This approach improves the sustainability and cost-
effectiveness of bioimaging studies by reducing data and com-
puting needs while optimising microscopy techniques.
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Introduction
Modern microscopy technologies have driven an unprece-
dented expansion in data volume. High-resolution tech-
niques, particularly super-resolution microscopy (1), gen-
erate substantially larger datasets than traditional methods
when imaging equivalent sample areas. A single 3D mul-
tichannel cell image from a spinning disk confocal requires
approximately 1GB of storage (considering a size of 4MB
for each slice of a three-channel and 100 z-slices volume).
In contrast, the same field acquired with a super-resolution
laser scanning microscope would be approximately 60 times
larger (estimated from images acquired in-house). To ad-

Fig. 1. The Image Resolution Paradox. The counterintuitive relationship between
image resolution and deep learning performance emerges from the mismatch be-
tween pixel size and the network’s receptive field. a) Decreasing image resolution
(increasing pixel size) causes pixelation and limits observable details, yet may im-
prove contextual information. b) The area observable within a convolutional neural
network’s (CNN) receptive field (magenta squares) determines the context avail-
able for predicting the value of a single pixel. c) Suboptimal pixel sizes lead to
impaired predictions—either fragmented segmentations caused by non-continuous
edges and inner pixels misclassified as background, referred to as false negatives
(too high resolution) or over-generalisation at edges (too low resolution). d) Opti-
mal image resolution for CNN-based processing depends on object size rather than
maximal achievable microscopy resolution, and proper calibration can simultane-
ously enhance segmentation accuracy and experimental throughput.

dress the challenges in acquisition, storage, and processing
posed by these volumes of data, researchers increasingly rely
on deep learning approaches that automate analytical tasks
while delivering reliable and reproducible results. For this,
the bioimage analysis community has developed numerous
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Fig. 2. ReScale4DL pipeline. Researchers can optimise the pixel size for a chosen deep learning architecture using their newly acquired and annotated images or on
existing datasets, which can be used as a starting point for the optimisation. A series of image rescaling factors is applied to the data, a deep learning model is trained for
each rescaled dataset, and different accuracy metrics and features are computed. Once an ideal target metric is chosen, such as the accuracy of the image processing
performance, the recovery of an image feature, or a good compromise between the throughput and accuracy, researchers can identify an adequate pixel size and launch their
imaging experiments with optimised image resolution. The results presented in this manuscript were obtained by following the ReScale4DL pipeline.

user-friendly solutions (2, 3), including standalone software
and platform-integrated plugins (4–11), enabling researchers
to leverage these powerful methodologies.
Yet, bioimage analysis faces unique efficiency challenges
compared to other deep learning domains. The most sig-
nificant bottlenecks include: limited computational resources
and storage capacity, particularly problematic for time-lapse
volumetric data; scarcity of large annotated datasets essen-
tial to train robust models and transfer learning (12, 13); and
insufficient understanding of the relationship between im-
age quality metrics and computational performance require-
ments (14, 15).
In computer vision, image quality often equates to an algo-
rithm’s efficiency in extracting relevant information under
hardware constraints. Counterintuitively, a low-resolution
image containing sufficient detail to perform the computa-
tional task accurately may be optimal, as it maximises the
information-to-resource ratio. For instance, cell nuclei ap-
pear more homogeneous at lower resolutions, enabling neural
networks to generalise more effectively. Conversely, at high
resolution, nuclei images can display heterogeneous struc-
tures, introducing noise during segmentation and potentially
increasing false negatives. This computational perspective
contrasts with traditional microscopy practices, where image
quality has been equated with higher resolution and mag-
nification, assuming finer details provide more informative
content (1). However, while visually appealing, the wealth
of information in high-resolution images can be irrelevant

or even detrimental to computational analysis, as our results
here demonstrate.
We present this phenomenon as the image resolution para-
dox: While high-resolution microscopy captures more detail,
this additional data may contribute minimally—or even nega-
tively—to a certain analysis task while requiring substantially
greater resources. This paradox is particularly evident in deep
learning-based pipelines (Fig. 1). The limitation stems from
convolutional neural network’s (CNN) receptive fields—the
spatial region influencing a single output pixel. When im-
age resolution exceeds the network’s architectural optimum,
pixels lack sufficient contextual information, compromising
the model’s performance. Although practitioners often ad-
dress this by downsampling during pre-processing, incorpo-
rating resolution considerations directly into the experimental
design would enable acquisition at optimal resolutions from
the outset, simultaneously increasing throughput and reduc-
ing computational demands.
While this paradox is familiar to computer vision experts,
few tools explicitly account for it. Cellpose (16) represents
an exception, implementing automated re-sampling to opti-
mise pixel-to-cell-diameter ratios. However, most users re-
main unaware of this critical consideration, leading to sub-
optimal application of deep learning methods—particularly
with architectures like vanilla U-Net—and unnecessary pri-
oritisation of high-resolution acquisition despite its potential
drawbacks.
In this study, we quantitatively demonstrate this paradox and
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its impact on segmentation performance in bioimage anal-
ysis. For clarity, we define image resolution as the infor-
mation content per pixel, separate from optical resolution
considerations. We systematically evaluate resolution effects
on model accuracy using a canonical 2D U-Net (17) for se-
mantic segmentation and StarDist (9) for instance segmenta-
tion. Our experiments employ diverse specimens, including
high-magnification Caenorhabditis elegans (C. elegans) (18)
and brightfield Escherichia coli (E. coli) (19) images. Ad-
ditionally, we analyse Staphylococcus aureus (S. aureus) im-
aged with Structural Illumination Microscopy (SIM), demon-
strating that critical phenotypic changes remain detectable
even when reducing resolution by 16×, enabling proportional
throughput improvements. Beyond these examples, we pro-
vide a generalisable framework, ReScale4DL (https://
github.com/HenriquesLab/ReScale4DL), that re-
searchers can implement to determine optimal pixel sizes for
their specific contexts, maximising both computational effi-
ciency and information extraction (Fig. 2).

Results
High resolution and segmentation accuracy: a
counter-intuitive relationship. We trained a 2D U-Net ar-
chitecture to semantically segment different cellular regions
- inner area, edges, and background - using two distinct
datasets: C. elegans captured with brightfield microscopy
and E. coli imaged via phase contrast microscopy. For each
dataset, we systematically rescaled the images to multiple
resolutions and trained separate U-Net models to evaluate
performance across these conditions (Fig. 2). Since segmen-
tation accuracy depends on the relationship between image
resolution and object size, we quantified the performance
relative to the percentage of an object’s diameter covered by
a single pixel. Our experiments revealed a counterintuitive
relationship between resolution and segmentation quality
(Fig. 3). Contrary to conventional expectations, high-
resolution images often produced fragmented segmentation
masks with unexpected discontinuities. In the C. elegans
dataset, the inner masks produced at the original resolution
contained spurious holes where pixels were misclassified
as background (Fig. 3a)). This occurred because the model
lacked sufficient contextual information to confidently
identify inner and outer objects’ areas and one-pixel width
edges were under-represented for the given receptive field
and resolution. Namely, the Intersection over Union (IoU)
of semantic segmentations decreased by approximately 40%
compared to binary segmentation, which remained relatively
high (> 0.9) despite these deficiencies (Fig 3b)). Notably,
downsampling the images improved accuracy metrics for
both binary and semantic segmentation approaches, pro-
viding clear evidence that maximum resolution does not
necessarily yield optimal segmentation results. The E. coli
dataset analysis corroborated these findings (Fig. 3c-e)).

To ensure consistent comparison, we maintained identical U-
Net architecture and hyperparameters across all experiments
in Fig. 3, enabling direct assessment of resolution’s impact

Fig. 3. Impact of image resolution on deep learning segmentation accuracy.
A 2D U-Net architecture was employed for semantic segmentation of cellular re-
gions (inner area and boundary) in microscopy images. Images were systematically
resized to simulate varying acquisition resolutions, with a separate U-Net model
trained for each resolution factor. a) Segmentation results for Caenorhabditis ele-
gans (C. elegans) using original images (pixel covering ∼1% of worm diameter) and
images downsampled by factor 23 (pixel covering ∼8% of worm diameter). Scale
bars: 100 and 25 pixels, respectively. b) (Boxplots) Intersection over Union (IoU)
distributions across downsampling factors ranging from ×1 to ×24, showing how
segmentation accuracy varies with pixel size relative to object diameter. IoU was
calculated both for semantic segmentation (average IoU of edge and inner regions)
and binary masks (merged labels). (Purple line in logarithmic scale) Theoretical
throughput was calculated as the number of objects observable by a unit of time (τ )
given a certain resolution. τ is specific to each microscopy acquisition modality and
preserved across the different resolutions. c-e) Equivalent analysis for Escherichia
coli (E. coli) segmentation in phase contrast microscopy. c) Examples showing
fragmented results (2% diameter coverage), optimal segmentation (8% coverage),
and edge over-segmentation. Scale bars: 100, 25, and 10 pixels, respectively.
d) IoU distribution (boxplots) and theoretical throughput (purple line in logarithmic
scale) across varying bacteria diameter coverage ratios. e) Comparison between
diameter distributions estimated from U-Net segmentation versus ground truth, with
closest correspondence at 4% diameter coverage. Vertical dashed lines in panels
b), d), and e) indicate the original dataset resolution.

on model performance. Both datasets’ accuracy curves ex-
hibited similar quadratic relationships between image resolu-
tion, object size, and IoU scores. For C. elegans, binary and
semantic segmentation achieved peak IoU when pixels cov-
ered 2-4% and 4-8% of worm diameter respectively, demon-
strating that optimal resolution differed from the original mi-
croscopy acquisition (1% coverage). Similarly, the E. coli
dataset exhibited the highest IoU at comparable proportional
resolutions: 4-16% diameter coverage per pixel for binary
segmentation and 8-16% for semantic segmentation. This
consistency across different biological specimens reveals a
fundamental principle: our U-Net’s 50× 50 pixel receptive
field imposes practical constraints. Objects with diameters
exceeding 25 pixels (corresponding to < 4% diameter cover-
age per pixel) become problematic as their size exceeds the
receptive field, while objects smaller than 6 pixels (> 16% di-
ameter coverage) risk information dilution and loss through
the network’s operations. As exemplified, for any given CNN
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Fig. 4. Deep learning-driven resolution adjustment enables phenotype dis-
tinction while increasing imaging throughput. Staphylococcus aureus (S. au-
reus) bacteria were treated with FtsZ inhibitor PC190723, which prevents cell divi-
sion and results in larger bacteria phenotypes (20). S. aureus (wild type (WT) and
treated) were then imaged using Structured Illumination Microscopy (SIM) and seg-
mented with StarDist. a) Representative images of S. aureus with ground truth (GT)
segmentation and StarDist results at the original resolution (WT) and after 23-factor
downsampling (both WT and treated conditions). Scale bars: 100, 25, and 25 pix-
els, respectively. b) (Boxplots) Distribution of Intersection over Union (IoU) values
of StarDist models trained and tested only with WT bacteria images across multi-
ple resolution factors (upsampling: 2−2 to 20; downsampling: 21 to 24), showing
the relationship between segmentation accuracy and the percentage of bacterial
diameter covered by a single pixel. (Purple line in logarithmic scale) Theoretical
throughput was calculated as the number of objects observable by a unit of time (τ )
given a certain resolution. τ is specific to each microscopy acquisition modality and
preserved across the different resolutions. c) Diameter distributions across resolu-
tion scales estimated from GT and the StarDist results for WT bacteria images in
b). d) Comparison of the diameter distributions across various resolution scales for
WT and treated bacteria. StarDist was trained with a mixed dataset containing WT
and PC190723-treated S. aureus images in this case.

architecture, there exists an optimal resolution that max-
imises segmentation accuracy—and importantly, this reso-
lution is typically significantly lower than what human ob-
servers prefer, allowing imaging pipelines with substantially
improved throughput.

Optimising image resolution preserves pheno-
typic discrimination while maximising experimental
throughput. Building upon our findings, we demonstrate
how optimising image resolution preserves segmentation
performance while enhancing experimental throughput. We
tested this approach using Staphylococcus aureus (S. aureus)
bacteria treated with antibiotic PC190723 and imaged via
SIM. PC190723, a FtsZ inhibitor, prevents cell division and
produces enlarged bacteria (20). To quantitatively assess
this morphological effect, we employed StarDist—a deep
learning approach optimised for instance segmentation of
star-convex objects like round bacteria—to segment indi-
vidual cells and measure diameter distributions (Fig. 4a)).
As in our previous experiments, IoU values across different
resolution factors revealed an optimal range where segmen-
tation accuracy peaks. Notably, even at substantially reduced
resolutions, StarDist maintained robust performance: with
up to 11% of bacterial diameter covered by a single pixel,
IoU values exceeded 0.8, and even with 23% coverage,
IoU remained above 0.75 (Fig. 4b)). Analysis of wild-type
(WT) diameter distributions confirmed that measurements
derived from ground truth and StarDist predictions remained

consistent across resolutions ranging from 0.75% to 6% of
diameter per pixel. Only at coverage ratios exceeding 11%
(downsampling factor > 23) did diameter estimates begin to
diverge, likely because objects were reduced to just a few
pixels in width (Fig. 4c)). Most importantly, when training
a StarDist model with WT and antibiotic-treated mixed
bacteria populations, the diameter differences remained
distinguishable across all sampling ratios, demonstrating that
phenotypic discrimination is preserved even at significantly
lower resolutions than typically employed (Fig. 4d)). Thus,
by strategically reducing acquisition resolution, researchers
can substantially increase imaging throughput and decrease
acquisition times (Figs. 3b), 3d) and 4b)), enabling more
comprehensive dataset collection for statistically robust
experimental analyses.

Discussion
Our systematic investigation of the resolution paradox in
deep learning-driven bioimage analysis reveals a fundamen-
tal trade-off between spatial resolution and computational
performance. Our results demonstrate that popular methods
like U-Net and StarDist (which often use a U-Net architec-
ture) achieve optimal accuracy when image resolution is cal-
ibrated to match the network’s receptive field with biological
object dimensions, rather than maximising resolution. This
finding challenges conventional microscopy practices while
offering significant practical benefits for experimental work-
flows.
The paradox emerges from fundamental neural network char-
acteristics. When object features exceed the receptive field
(high resolution), networks lack sufficient context for consis-
tent boundary prediction, resulting in fragmented masks with
spurious discontinuities. Conversely, excessively downsam-
pled images (low resolution) compress critical morpholog-
ical features beyond recognition. Our quantitative analysis
reveals a predictable quadratic relationship between object
diameter coverage per pixel and segmentation accuracy, with
optimal performance for the 2D U-Net consistently occurring
when pixels cover 4-16% of object diameter—irrespective of
the type of specimen or imaging modality. This optimal range
represents a "sweet spot" where networks balance local detail
with global context.
Most significantly, we demonstrated that models trained on
optimally downsampled images maintain phenotypic dis-
crimination capabilities. In the S. aureus antibiotic response
experiment, critical morphological differences remained de-
tectable even at 16× lower resolution than commonly used
(Fig. 4). This finding has profound implications for ex-
perimental design: researchers can substantially increase
imaging throughput, reduce photobleaching and phototox-
icity, minimise data storage requirements, and accelerate
analysis pipelines—all without compromising biological in-
sights (21, 22).
Although these principles are established in computer vision
communities, they remain underappreciated in life sciences,
where imaging protocols continue to emphasise the maxi-
mum achievable resolution regardless of computational anal-
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ysis requirements. Our work provides a practical framework
for biologists to determine optimal resolution parameters for
their specific experimental contexts. By conducting prelim-
inary resolution calibration studies before full-scale data ac-
quisition, researchers can design more efficient imaging pro-
tocols that balance biological information content with com-
putational performance.
The paradox persists in emerging transformer-based archi-
tectures despite their theoretical multi-scale capabilities. As
demonstrated through MicroSAM (23) foundation model
evaluations, fixed context windows in pre-trained models re-
main susceptible to resolution mismatches (Note 2, Fig. 5).
However, the growing ecosystem of interactive tools like
BioImage Model Zoo (6), MicroSAM (23) and DinoSim
(24) creates opportunities for rapid empirical optimisation,
turning this challenge into an accessible experimental design
parameter.
Democratising AI in bioimaging requires deeper integration
of data physics with model architectures. Current trends
favour pre-trained "smart" solutions over adaptable systems,
risking suboptimal application to novel experimental con-
texts. Future developments should prioritise dynamic acqui-
sition systems that adjust resolution in real-time based on on-
going analysis, coupled with neural architectures explicitly
encoding multi-scale relationships. By embedding these con-
siderations into standard workflows, the field can achieve re-
producible, resource-efficient microscopy pipelines that bal-
ance information content with computational sustainability.

Methods
Biological image datasets. Publicly available high-
resolution Caenorhabditis elegans (C. elegans) minimum
projection brightfield microscopy images and instance seg-
mentation masks were obtained from (18). Publicly avail-
able Escherichia coli (E. coli) brightfield microscopy images
and instance segmentation masks dataset was obtained from
(19), which is available on Zenodo 10.5281/zenodo.
5550934. In-house acquired super-resolution Staphylococ-
cus aureus (S. aureus) cell wall structured illumination mi-
croscopy (SIM) fluorescence images and annotated instance
segmentation masks dataset available on Zenodo 10.5281/
zenodo.15169017.

Dataset re-sampling. ReScale4DL Python li-
brary (https://github.com/HenriquesLab/
ReScale4DL) was used to resize raw images and their
respective masks. For C. elegans and E. coli, the in-
stance masks were first rescaled and then, the edges
and inner side were estimated using the ImageJ macro
available in DeepBacs GitHub repository (19) (https:
//github.com/HenriquesLab/DeepBacs/). Up-
sampling was computed with catmull-rom interpolation
and nearest-neighbor interpolation methods for the raw
and the mask images, respectively (all available within
the NanoPyx Python package (25)). Downsampling was
computed with binning and transform.rescale from
scikit-image for the raw images and the masks respec-

tively. C. elegans dataset was downsampled by factors 2, 22,
23, and 24. E. coli was upsampled by factors 2 and 22 and
downsampled by factors 2 and 22. S. aureus was upsampled
by factors 2 and 22 and downsampled by factors 2, 22, 23,
and 24.

Segmentation networks. The 2D Multilabel U-Net and 2D
StarDist (9) ZeroCostDL4Mic (2) notebooks were used with
DL4MicEverywhere (11) with the hyperparameter configu-
ration in Table 1.

Evaluation. The Intersection over Union (IoU) scores visu-
alised in Fig.s 3 and 4 were computed for the results of all
the models specified in Table 1, and for the binary segmen-
tation (C. elegans and E. coli), semantic segmentation (C.
elegans and E. coli) and instance segmentation (S. aureus)
results. For each object j in an image i, the diameter Dij
of non-rounded shapes (C. elegans and E. coli datasets) was
computed as the median of the Euclidean Distance Transform
(EDT) values contained in the object’s skeleton. For S. au-
reus dataset, Dij of each bacteria was estimated by solving
the equation of the circle area, given as

Dij = 2 ·
√
Aij
π

(1)

where Aij is the area of the object j in the image i, measured
as the sum of all the pixels in the object. To compute the
average portion of diameter covered by one pixel, we first
computed the average diameter for each scaling factor, Ds as

Ds = 1
N

N∑
i=1

 1
Oi

Oi∑
j=1

Dij

 , s ∈
[
2Z[−2,4]

]
(2)

where Oi is the total number of objects in the image i, N is
the total number of images in the dataset and s is the rescal-
ing factor. Then, Ds was inverted and multiplied by 100 to
compute the portion of diameter covered by one pixel.
To measure the throughput achievable for each rescaling fac-
tor s, we first estimated the average area in pixels of each
object in an image in pixels (As). Then, we consider the size
of the achievable field of view (FOV) for a camera as the area
in pixels of the images in the original dataset (CAMFOV ).
Considering the throughput as the amount of information
recordable per unit of time, we computed the throughout as

THs = CAMFOV

As
× 1
τ
, s ∈

[
2Z[−2,4]

]
(3)

where τ is the time required to acquire a FOV . In other
words, THs provides an estimate of the number of objects
that can be captured by a unit of time, yet, using Equation 3
with preliminary information about the sample’s morphology
and microscopy camera features, it is possible to compute
this value easily.

Code availability. The code for rescaling the images
and computing the metrics is available athttps://
github.com/HenriquesLab/ReScale4DL. The
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notebooks to train, test and deploy inference are avail-
able through the DL4MicEvrywhere (https://github.
com/HenriquesLab/DL4MicEverywhere) platform.

Data availability. WT and antibiotic-treated super-
resolution Staphylococcus aureus (S. aureus) cell
wall SIM images together with instance segmenta-
tion annotations are available on Zenodo https:
//zenodo.org/records/15169018.
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Supplementary Note 1: Deep learning model training hyperparameters

C. elegans E. coli S. aureus
Network 2D U-Net Network 2D U-Net Network 2D StarDist
Epochs 1000 Epochs 1000 Epochs 1000

Patch size 512 (x2−2,−1,0) Patch size 512 (x2−2,−1,0) Patch size 2048 (x2−2,−1,0)
(per resizing 256 (x2) (per resizing 256 (x2) (per resizing 1184 (x2)

factor) 128 (x22) factor) 128 (x22) factor) 576 (x22)
64 (x23) 272 (x23)
32 (x24) 128 (x24)

Batch size 5 Batch size 5 Batch size 2
Validation [%] 10 Validation [%] 10 Validation [%] 10
Learning rate 0.0001 Learning rate 0.0001 Learning rate 0.0003
Pooling steps 2 Pooling steps 2 Grid parameter 2

Minimal fraction 0.05 Minimal fraction 0.05 Number of rays 32

Table 1. The network architecture and the training parameters for each dataset were preserved. The patch size for the input during
training was dynamically changed with the image resizing to maintain the same field of view, except for the upsampling due to limited
GPU capabilities. The values 2−2,−1 correspond to image upsamplings, 20 is the original image resolution and 21,...,4 correspond to
image downsampling.

Supplementary Note 2: Optimising the pixel size for foundation models
Here we provide a visual example of segmentation performance using foundation models for images with different pixel sizes.
We performed instance segmentation of Escherichia coli (E. coli), Caenorhabditis elegans (C. elegans), and Staphylococcus
aureus (S. aureus) samples using MicroSAM (23) software, with the same rescaling factors used for the Figs. 2 and 4. For
simplicity, we used their 2D Annotator plugin in Napari to deploy interactive segmentation with a single-point prompt-based
approach, followed by the automatic instance segmentation. Rescaled images were individually segmented by manually point-
ing to the same structural landmark each time. For all experiments, we chose the Vision Transformer (ViT) Large backbone
architecture, a fine-tuned version of the original Segment Anything Model (SAM) (26) for cellular and nuclear segmentation in
light microscopy (ViT-l-lm). Importantly, the segmentation results provided here may not be optimal and only aim to show
the variability of the model according to the image resolution under the same conditions. Indeed, the results could be improved
by changing the prompt or by increasing their number.
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Fig. 5. Segmentation results of Segment Anything for Microscopy on images with different pixel sizes using a single point
prompting. MicroSAM (23) was used to obtain the instance segmentation of a) S. aureus, b) E. coli and c) C. elegans example images.
For simplicity, we followed a single point-wise prompting strategy, pointing to the same object on each rescaled image (i.e., the manual
prompt was the same on each panel), and run the automatic instance segmentation pipeline. All the images matched model input
dimensions (512 × 512 pixels) to avoid internal tiling or image re-scaling. The images that had smaller dimensions were padded with
zeros. Scale bars correspond to 25 µm for a), and 50 µm for b-c). Square boxes correspond to the same physical area on each image.
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