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Volume correlative light and electron microscopy (vCLEM) is a powerful

imaging technique that enables the visualization of fluorescently labeled
proteins within their ultrastructural context. Currently, vCLEM alignment
relies on time-consuming and subjective manual methods. This paper
presents CLEM-Reg, an algorithm that automates the three-dimensional
alignment of vCLEM datasets by leveraging probabilistic point cloud
registration techniques. Point clouds are derived from segmentations of
common structures in each modality, created by state-of-the-art open-source
methods. CLEM-Reg drastically reduces the registration time of vVCLEM
datasets to a few minutes and achieves correlation of fluorescent signal to
submicron target structures in electron microscopy on three newly acquired
vCLEM benchmark datasets. CLEM-Reg was then used to automatically
obtain vCLEM overlays to unambiguously identify TGN46-positive transport
carriers involved in protein trafficking between the trans-Golgi network and
plasmamembrane. Datasets are available on EMPIAR and BioStudies, and a
napari pluginis provided to aid end-user adoption.

Correlative light and electron microscopy (CLEM) is a powerful
imaging technique that seeks to capitalize on the advantages of light
microscopy (LM) and electron microscopy (EM) while circumventing
the drawbacks of each. This has made CLEM the imaging technique
of choice to target rare and dynamic biological events that require
structural analysis at high resolution"?. Fluorescence microscopy
(FM) is an LM imaging modality that generates contrast by tagging
macromoleculesin living cells and tissues with fluorescent proteins,
enabling dynamic observation of their biological interactions; how-
ever, dueto the diffraction limit of light, traditional FM cannot achieve
aresolution better than around 200 nm, hindering fine structural
details from being resolved®. While super-resolution techniques can

surpass this diffraction limit, such methods require specialized instru-
ments, specific sample preparation and imaging protocols, impos-
ing additional constraints on the type of biological events that can
be imaged*. Moreover, FM generally tags specific macromolecules,
providing excellent molecular specificity; however, unlabeled struc-
tures cannot be observed. EM addresses these limitations, achieving
orders of magnitude higher resolution while revealing the underlying
biological context’in exquisite detail, but at the cost of a smaller field
of view (FOV) and the lack of molecular specificity. By harnessing the
complementary information derived from the correlation of LM and
EM, CLEM hasled toavariety of biological discoveries, such as estab-
lishing the structure of tunneling nanotubes in neurons®, observing
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blood vessel fusion events in zebrafish? and localizing tuberculosis
bacteria in primary human cells'.

Typically, CLEM data are obtained by sequentially imagingasam-
pleinFMand then EM. First, relevant structures are tagged with organic
dyesor fluorescent proteins, and a volumetricimage stack is acquired
using FM. The sample is fixed with crosslinkers, either before or after
the FMimaging, to conserve structural features. Itis then stained with
heavy metal salts to introduce contrast, dehydrated, embedded in
resinand trimmed to theregion ofinterest (ROI)”. In volume EM (VEM),
layers of the embedded sample are physically removed and either the
face of theblock or the sections themselves areimaged in EM to obtain
an image volume®. This results in two corresponding image stacks,
one from FM and one from EM, each containing complementary data
from the same physical region of the sample, but typically imaged
in different orientations. In addition to this orientation mismatch,
the sample preparation and imaging can introduce both linear and
nonlinear deformations between the FM and EM image volumes. To
correlate the FM signal to the ultrastructurein EM, image volumes need
to be registered. Due to the stark differences in resolution, contrast
and FOV between FM and EM, this is a challenging task that cannot be
approached withintensity-based methods that are routinely used for
aligning data from visually similar modalities, for example magnetic
resonance imaging (MRI) and computed tomography (CT).

There are two general approaches to solving this problem. The
firstapproachis to process one or bothimages such that they share
a similar visual appearance, for example, by directly converting
across modalities®*'° or by constructing a shared modality-agnostic
representation'2, Once the processed image stacks are sufficiently
similarinvisual appearance, traditional intensity-based registration
techniques, such as those employed in medical imaging", can be
used to automatically align the two datasets. The second approach
uses alandmark-based method, such as those implemented in soft-
ware tools like BigWarp' and eC-CLEM". These tools rely on manu-
ally identifying precise spatial regions visible in both modalities, for
example, small subcellular structures or prominent morphological
features. By manually placing a landmark at an identical physical
position in each modality, spatial correspondences can be estab-
lished. From these landmarks, the transformation between image
volumes can be computed', bringing them into alignment via an
iterative optimization process'®”. Methods to automate alignment
via detection of cell centroids in LM and EM*® or semi-automated
feature detection (for example AutoFinder in eC-CLEM") have
been developed; however, such methods are often restricted to
two dimensions or limited to relatively coarse alignment, requiring
subsequent manual refinement. Moreover, deep-learning-based
methods that convert across modalities® or construct a shared
modality-agnostic representation’? require large amounts of aligned
ground truth data. Due to the low throughput and required exper-
tise of manual volume CLEM (vCLEM) alignment, generating such
ground truth datais challenging.

An important advantage of landmark-based approaches is the
inherently sparse representation, which substantially reduces memory
and computational requirements compared to intensity-based regis-
tration techniques that must generally hold both image volumes in
working memory; however, this manual landmark selection step is
laborious and time-consuming, severely impacting throughput and
potentially introducing bias, as the target structure may be directly
used for registration. To avoid such biases, landmarks used for regis-
tration should be different from the target structures being studied
wherever possible, taking care to ensure color-correction between
the channels in FM to avoid spectrally induced shifts in focal depth.
Dueto these limitations, robust and objective automation of landmark
detection is highly desirable.

Here, CLEM-Reg is introduced, an automated vCLEM registra-
tion algorithm that relies on extracting landmarks from common

structures in each modality. To achieve this aim, a workflow to seg-
ment mitochondria was developed. Mitochondria were chosen spe-
cifically because they are abundant and typically well distributed
across cells, and easily imaged in both FM and EM, enabling robust
matching across modalities. Various segmentation approaches are
routinely used in microscopy, ranging from classicalimage processing
techniques®™®?° to machine learning” 2, Depending on the complexity
and density of structuresin theimage at hand, different algorithms are
appropriate. Forinstance, mitochondria segmentations in FM images
can be obtained by filtering, thresholding and further downstream
image processing'”, while automatically segmenting EM data typically
requires deep learning. Common deep-learning architectures such as
‘U-Net’ canbe trained to very good effect, but the burden of obtaining
sufficient ground truth data presents a huge challenge, often requir-
ing substantial amounts of expert effort or crowdsourcing of manual
annotations®. Recently, however, pretrained ‘generalist’ models such
as MitoNet?, based upon a ‘Panoptic-DeepLab’ architecture?®, are
ableto provide out-of-the-box performance levels for mitochondrial
segmentationin EM that are sufficient for many tasks, with the option
to fine-tune where necessary.

After segmentation, points are equidistantly sampled from the
surface of the mitochondria segmentations in both the FM and EM
volumes, resulting in a ‘point cloud’ for each modality. Point clouds
areanattractive modality-agnostic representation due to their inher-
ent sparsity and the availability of a range of performant registration
algorithms'®**’; however, unlike manually generated pairs of points,
there is no guarantee of a one-to-one precise spatial correspondence
between points in the different modalities. The coherent point drift
(CPD)¥ algorithm overcomes this limitation by casting the alignment
task as a probability density estimation problem, thereby removing
the constraint of strict point correspondences.

Assessingregistration performance in vCLEM overlays is challeng-
ing. Unlike in the medicalimaging field where multimodal registration
of MRI and CT scans is achieved by minimizing mutual information
(MI)*°, no equivalent metrics exist to compare FM and EM volumes. This
lack of metricsis animportant hurdle inautomating vCLEM alignment
and evaluating registration performance. Currently, vCLEM overlay
quality is assessed by experts via visual inspection, oftentimes by the
same person that generated the alignment.

The aim of vVCLEM experiments is to functionally label ultrastruc-
ture in EM with fluorescent signal. These structures can range from
microns to a few nanometers in size. To test the limits of CLEM-Reg,
registration performance was assessed on some of the smallest
known organelles, namely lysosomes, which have a size of 0.3-1pm
(refs. 31,32). To quantify registration performance, two new metrics
based onthe correlation of fluorescent signal (LysoTracker) to submi-
crontargetstructures (lysosomes) in EM are introduced here. Specifi-
cally, the volume of lysosomes overlaid by fluorescence was computed
and centroid distances between fluorescent signal and lysosomes
calculated. Manual registration by an expert was used as a baseline for
assessing the performance of CLEM-Reg.

Performance quantification was conducted on two newly
acquired vCLEM benchmark datasets using two different EM modali-
ties: focused ion beam scanning electron microscope (FIB-SEM) and
serial block-face scanning electron microscope (SBF-SEM). A third
vCLEM dataset was acquired to investigate arare and dynamic cellular
process involving submicron organelles. TGN46 (TGN38 in rodents)
has previously been observed in transport carriers involved in pro-
tein trafficking between the trans-Golgi network (TGN) and plasma
membrane®~*°, These transport carriers are rare, as they account
for only 1-5% of the total TGN46 signal®. Here, CLEM-Reg is used to
automatically register the GFP-TGN46 signal to EM ultrastructure
in three dimensions, facilitating accurate identification of TGN46
transport carriers that would have been missed by visual inspection
ofthe EM volume alone.
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Results

Benchmark dataset acquisition

To assess the performance of CLEM-Reg against an expert, three
benchmark vCLEM datasets (EMPIAR-10819, EMPIAR-11537 and
EMPIAR-11666) of human cervical cancer epithelial (HeLa) cells were
acquired. Mitochondria (MitoTracker Deep Red), nucleus (Hoechst
33342), Golgi apparatus protein TGN46 (GFP-TGN46) and lysosomes
(LysoTracker red) in EMPIAR-10819 and EMPIAR-11666 and plasma
membrane (WGA) in EMPIAR-11537 were tagged to enable unbiased
registration performance assessment on target structures. After imag-
ing the samples with a Zeiss Airyscan LSM900 microscope, two cor-
responding EM volumes (EMPIAR-10819 and EMPIAR-11537) with an
isotropic voxel size of 5 nmwere acquired in aFIB-SEM. The EM volume
in EMPIAR-11666 was acquired in an SBF-SEM (7 nmin xy and 50 nm
in z). The acquired images were prealigned to the nearest orthogo-
nal rotation following a routine image processing workflow in Fiji
(Methods and Fig. 1a).

The CLEM-Reg pipeline

CLEM-Reg automatically aligns vCLEM data by segmenting mitochon-
driain FM and EM, generating point clouds and registering them with
CPD*?% astate-of-the-art point cloud registration technique. The FM
volume is then warped onto the EM volume using the found transfor-
mation (Fig. 1b). To aid adoption, CLEM-Reg is deployed as a plugin
(‘napari-clemreg’) for the napariimage viewer?, giving users the option
forasingle-clickend-to-end operation, or to fine-tune or even entirely
replaceindividual workflow steps (for example, importing segmenta-
tions; Fig. 1c).

Segmenting internal landmarks

A promising approach to automating vCLEM registration is to auto-
matically identify internal landmarks, speeding up the process and
minimizinginadvertent subjective bias. CLEM-Regrelies on segmenting
these common internal landmarks in both imaging modalities. Here,
mitochondria were used as landmarks.

To obtain segmentations in FM, an algorithm based on combin-
ing a three-dimensional (3D) Laplacian of Gaussian (LoG) filter with
dynamic thresholding to account for signal degradation at deeper
imaging levels was developed. The algorithm requires two parameters
to be adjusted: kernel size and relative segmentation threshold. After
obtaining an initial segmentation mask, spurious segmentations are
removed with a size-based filter (Fig. 2a).

Mitochondriasegmentationsin EM are obtained with a pretrained
MitoNet” deep-learning model, which was found to perform well on
FIB-SEM data out-of-the-box (Fig. 2b) and required slight preproc-
essing for SBF-SEM data (Methods). CLEM-Reg’s robustness to miss-
ing mitochondria segmentations in the EM volume was estimated
by randomly removing segmentations (Extended Data Fig. 1a). The
registrationaccuracy of CLEM-Reg was constant up to aloss of around
40% of segmented mitochondria in EM. The impact of segmentation
errorsindifferent areas of the EM volume was also assessed (Extended
Data Fig. 1b). Registration performance was most impacted by the
loss of peripheral segmentations. While mitochondria were used as
off-target landmarks here, note that CLEM-Reg is not restricted to
using mitochondria segmentations and can be used with previously
obtained EM segmentation masks of other structures or organelles
(forexample, nuclear envelope).

Generating modality-agnostic point clouds and registration

Thealignment between the FM and EM segmentations can be inferred
by sampling 3D point clouds fromthe previously obtained segmenta-
tion masks. This reduces the computational load for large datasets
and allows for mistakes in the segmentation to be ignored by using a
probabilistic registration algorithm, such as CPD. The extraction of
pixel coordinates from the exterior of the segmentation masks results

ina3D point cloud. The number of pointsin both point clouds depends
ontwo parameters: binning and downsampling factor (Fig.3a). Increas-
ingany of these two parameters speeds up the registration, potentially
by orders of magnitude. For instance, reducing the point sampling
frequency from1/16 to1/256 with a fixed voxel size 0f 10 x 10 x 10 pixels
(points within each voxel are averaged to generate one point) leads to
a19-fold decrease (from 33.7 min to 1.8 min) in registration time with
no change in registration performance on EMPIAR-10819 (Extended
DataFig.2).Indeed, thetimerequired toregister point clouds follows
apower law (Extended Data Fig. 3) with an exponent ranging between
1.47 and 1.69 which implies that doubling the number of sampled points
increases the time required for registration by a factor of 21 to 2.
After sampling, the point clouds are registered using either rigid
CPD, affine CPD or nonlinear Bayesian CPD (BCPD) (Fig. 3b)”. Note that
these probabilistic methods are necessary”, as the sampled points
are not paired across modalities. The choice of registration algorithm
depends on the expected deformations between the FM and EM vol-
umes, as well as computational constraints. In general, rigid CPD is
faster and computationally less expensive than nonlinear BCPD.

Warping FM volume to obtain vCLEM overlay

Once point clouds are registered, the found transformation is used
to warp the FM volume onto the EM volume. This step is fast for rigid
transformations but orders of magnitude slower for nonlinear warping.
CLEM-Reg implements 3D nonlinear thin-plate spline warping® that
uses the initially sampled and registered FM point clouds as control
points. The runtime of the thin-plate spline warping depends on the
interpolation order and size of the approximate grid. As thin-plate
spline warpingis an expensive algorithm, CLEM-Reg also implements
the option to sequentially warp subvolumes. While this extends the
runtime of the warping step, it reduces the required random-access
memory (RAM). Notably, overlays obtained with rigid alignment
(Fig.4a-c) outperformed nonlinear alignment on the three benchmark
datasets (Extended Data Fig. 4).

Assessing CLEM-Reg performance against experts

Due to the lack of existing metrics for VCLEM alignment, two metrics
wereintroduced to holistically assess registration performance: fluo-
rescentsignal overlap to EMstructures and centroid distance between
fluorescent signal and target structures. Additional quantification was
conducted on manually placed landmarks in the LM and EM volumes.

For the correlation of fluorescence to FIB-SEM data, five target
structures (lysosomes) were manually segmented in EM. The selected
lysosomes variedinsize (0.029-0.522 pm3) and were distributed across
the cell volume (Supplementary Fig. 1a,b).

Toobtain CLEM-Reg overlays of the LysoTracker channel, off-target
landmarks (mitochondria) were used for registration. This reduces bias
that results from aligning fluorescence directly to presumed target
structures. Registration with CLEM-Reg took 5.52 min (from starting
registration to obtaining warped overlays for all channels, including
mitochondriasegmentation) onaportable machine (Methods). Manual
registration was performed with BigWarp by an expert with access to
all fluorescent channels requiring approximately 2 h (Fig. 5a).

Thevolume of segmented lysosomes in EM overlaid by LysoTracker
signal was computed by first segmenting the LysoTracker channel
with Otsu thresholding® and then computing the intersected volume
between both segmentations. It was found that all lysosomes seg-
mented in EM were overlaid with the LysoTracker signal regardless of
size (Fig. 5b). Notably, even the smallest lysosome with a volume of
0.029 pm?3 was labeled with fluorescence, showing correct correlation
well below the diffraction limit.

Next, centroid distances between segmented LysoTracker signal
and lysosome segmentations were computed. Lysosomes were on
average 2.62 times larger than average centroid distances obtained
with CLEM-Reg, indicating unambiguous labeling (Fig. 5¢). Average
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a VCLEM data generation

4-channel FM stack
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b Automated vCLEM registration with CLEM-Reg
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Fig.1| Volume CLEM data generation and CLEM-Reg algorithm. a, Obtaining a
vCLEM dataset consists of acquiring a FM and VEM image of the same sample. The
two image stacks are traditionally manually aligned by identifying landmarksin
both modalities and computing a transform to warp the FM stack onto the vVEM
data. b, CLEM-Reg fully automates the registration step for vVCLEM datasets by

CLEM-Reg
<— Select image data

<— Registration algorithm

<— Segmentation parameters

<— Point cloud parameters

Registration and
warping parameters

<— Registration direction

first segmenting mitochondria in both image modalities, sampling point clouds
from these segmentations and registering them. Once registered, the point cloud
alignment is used to warp the FM stack onto the vEM data. All data visualizations
were generated with napari. ¢, The napari-clemreg plugin automatically registers
vCLEM datasets with a single button click. Panel a created with Biorender.com.
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@ FM segmentation with edge detection and dynamic thresholding

Pre-processing

MitoTracker

MitoTracker

Encoding layer
Encoding layer
Encoding layer

Laplacian of Gaussian

Size-based filter

3D segmentation

MitoTracker

Semantic

Post-processing

@
S
c
pet
%
2

Pre-trained MitoNet model

Fig. 2| Mitochondria segmentationin FMand EM. a, Mitochondriain the
MitoTracker channel are segmented by applying a3D LoG filter to extract edges
and dynamically thresholded to account for decreasing pixel intensity values as
theimaging depthincreases. To remove spurious mitochondria segmentations,
asize-based filteris used. b, Mitochondriain the vEM data are segmented with

apretrained MitoNet® model. The MitoNet architecture is composed of four
encoding layers, two atrous spatial pyramid pooling layers followed by semantic
and instance segmentation outputs, which are post-processed to yield a final
panoptic segmentation mask shown on the right-hand side. Visualizations were
generated with napari.

centroid distances obtained with CLEM-Reg were within 100.98 nm of
centroid distances obtained from manual registration and thus below
the theoretical resolution of the FMwhich, for the imaging system used,
was 120 nminxyand 350 nminz (Fig.5d). 3D visualization overlays of

segmentations and centroids of each lysosome are shown in Fig. 5e.
Further quantifications demonstrating equivalent performance on
conventional resolution confocal microscopy data (Supplementary
Fig.2a,b) are shownin Extended Data Fig. 5a-d.
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@ Point cloud generation and downsampling

Mitochondria segmentation

Generated point cloud

Downsampled point cloud

b Point cloud registration
< N . EM points

%, FM points

Iteration O

Fig. 3| Point cloud generation and registration. a, Point clouds are sampled
on the surface of the 3D mitochondria segmentations inboth FM and EM. To
reduce the computational load and speed up the alignment time (Extended

Iteration 5

After convergence *

DataFigs. 2 and 3), both point clouds are downsampled. b, The point clouds are
registered using rigid CPD? until convergence (50 iterations). Visualizations
were generated with napari.

To assess the generalizability of CLEM-Reg to other EM modali-
ties, performance was additionally assessed on a dataset acquired in
SBF-SEM. CLEM-Reg overlays were obtained by registering mitochon-
dria on a portable machine (Methods) requiring 2.44 min including
mitochondriasegmentation and image warping, while manual registra-
tion with BigWarp took around 2 h (Fig. 5f). A total of four lysosomes
distributed across the cell were manually segmented for performance
quantification (Supplementary Fig. 1c-f).

CLEM-Reg overlaid LysoTracker signal to all four lysosomesinthe
SBF-SEM volume regardless of size (Fig. 5g). Lysosomes were on aver-
age 6.95times larger than centroid distances obtained with CLEM-Reg,
indicating unambiguous correlation between fluorescent signal and
lysosomes (Fig. 5h). On average, centroid distances in the overlay
obtained with CLEM-Reg were within 54.88 nm of centroid distances
obtained from manual registration. Notably, CLEM-Reg achieved
smaller centroid distances compared to the manual registration on
two lysosomes (Fig. 5i). 3D visualization overlays of segmentations and

centroids of each lysosome are shown inFig. 5j. In addition, equivalent
alignment performance of CLEM-Reg on conventional resolution
confocal microscopy data (Supplementary Fig. 2e,f) was verified in
Extended Data Fig. 5e-h.

Toevaluate whether alignment performance depended on proxim-
ity of target structures to segmented mitochondria, centroid distances
between fluorescent signal and target structures were correlated with
distances of target structures (Extended Data Fig. 6 shows quantifica-
tion of endosome overlay on EMPIAR-11537) to mitochondria using
Spearman’s correlation (Extended Data Fig. 7). Only a slight correla-
tion of p=0.5in one dataset (EMPIAR-10819) and no correlation in
two datasets (EMPIAR-11537 and EMPIAR-11666) could be observed,
indicating that proximity to mitochondria did not lead to improved
registration accuracy.

Next, performance of CLEM-Reg against manual registration
was quantified on manually placed landmarks in the LM and EM vol-
umes using BigWarp (EMPIAR-10819, number of point pairs n=145;
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@ VCLEM overlay on FIB-SEM data (EMPIAR-10819)
LysoTracker

MitoTracker

CLEM-Reg

Manual (BigWarp)

b vcLem overlay on FIB-SEM data (EMPIAR-11537)

MitoTracker

CLEM-Reg

Manual (BigWarp)

€ VCLEM overlay on SBF-SEM data (EMPIAR-11666)

MitoTracker LysoTracker

CLEM-Reg

Manual (BigWarp)

Fig. 4| Comparing overlays obtained manually and with CLEM-Reg. CLEM-Reg
overlays were obtained with rigid registration using the napari-clemreg plugin,
while the manual overlays were obtained with affine registration using the
BigWarp plugin in Fiji. a, vCLEM overlays for EMPIAR-10819 dataset showing
mitochondria (MitoTracker), lysosomes (LysoTracker), Golgi apparatus (TGN46)
and nucleus (Hoechst) with EM data acquired on FIB-SEM microscope. b, vVCLEM

Hoechst

overlays for EMPIAR-11537 dataset showing MitoTracker, WGA, GFP-TGN46

and Hoechst with EM data acquired on FIB-SEM microscope. ¢, vVCLEM overlays
for EMPIAR-11666 dataset showing MitoTracker, LysoTracker, GFP-TGN46 and
Hoechst staining with EM data acquired on SBF-SEM microscope. Overlays were
generated with napari.
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af, LysoTracker channels were overlaid to FIB-SEM (EMPIAR-10819) and
SBF-SEM (EMPIAR-11666) data using mitochondria as off-target landmarks with
CLEM-Reg. To quantify registration performance, five lysosomes were manually
segmented throughout each EM volume. Corresponding segmentationsin FM
were obtained by segmenting the LysoTracker channel with Otsu’s method™.
b,g, Volume of lysosomes in EM overlaid by FM signal was computed by
intersecting EM and FM segmentations. ¢,h, Centroid distances between EM
segmentations and segmented LysoTracker signal in FM were computed with
Euclidean distance. Mean size of FM (n=5lysosomesincand n = 4 lysosomes

o CLEM-Reg (FM)

e Manual (FM)

inh) and EM (n = 5lysosomes in cand n = 4 lysosomes in h) segmentations

are shown in magenta and gray, respectively. d,i, The difference between
LysoTracker signal overlaid manually and with CLEM-Reg was computed from
previously found centroid distances. Mean difference in centroid distances
(n=5lysosomesindand n=4lysosomesini) is shown with ared horizontal

line. The theoretical xy and zresolution of the fluorescence microscope used is
shownin magenta. e j, 3D visualizations of lysosome overlays were generated by
obtaining meshes from segmentations of EM shown in gray, LysoTracker signal
registered using BigWarp (Manual) shown in blue and CLEM-Reg showninred.
Visualizations were generated with napari and matplotlib.

Nature Methods | Volume 22 | September 2025 | 1923-1934

1930


http://www.nature.com/naturemethods

Article

https://doi.org/10.1038/s41592-025-02794-0

EMPIAR-11537, n=42; and EMPIAR-11666, n = 55). Landmarks placed
in the LM volume were transformed with rigid and affine warping
matrices obtained from CLEM-Reg and BigWarp, respectively. Then,
Euclidean distances between transformed landmarks placed inthe LM
volume and corresponding landmarks placed in the EM volume were
computed (Extended Data Fig. 8a-cand Extended Data Fig. 9 for quali-
tative error maps between landmarks placed in EM and LM landmarks
transformed with CLEM-Reg). Distances between EM landmarks and
LM landmarks transformed by warping matrices found with CLEM-Reg
and BigWarp were not significantly different (Student’s ¢-test) in one
out of three datasets (EMPIAR-10819, P> 0.05; EMPIAR-11537, P < 0.01;
and EMPIAR-11666, P < 0.0001). Note, however, that warping matrices
obtained from BigWarp were computed to explicitly minimize dis-
tances between manually placed landmarksin LM and EM. Thus, Euclid-
ean distances computed between EM landmarks and LM landmarks
transformed by warping matrices obtained from BigWarp correspond
totheresidual registration error which arises due to landmarks being
placed by an expert relying on visual inspection only. To explore the
robustness of manual landmark placement, landmarks placed in the
LM and EM volumes were randomly offset by up to 10 pixels (Gaussian
random noise with p = 0 and 0 = n;;,s) and distances between LM land-
marks transformed by CLEM-Reg and BigWarp computed as described
above (Extended DataFig. 8d). Notably, randomly offsetting landmarks
by up to 3 (EMPIAR-11537) and 5 (EMPIAR-11666) pixels was sufficient
to obtain nonsignificant (P> 0.05 with Student’s ¢-test) differences
in alignment between CLEM-Reg and manual registration (Extended
DataFig. 8e,f).

Overall, these results indicate that CLEM-Reg successfully auto-
mates VCLEM registration of both FIB-SEM and SBF-SEM data, cor-
relating submicron structures with near expert-level accuracy while
considerably reducing registration time. Moreover, fluorescent overlay
of target structures does not correlate with distance to segmented
off-target structures (mitochondria) and registration with CLEM-Reg is
equivalent to BigWarp assuming manual landmarks are placed with an
error notexceeding five pixels. Crucially, registration with CLEM-Reg
was performed using an off-target channel (MitoTracker) and assessed
on an unseen target channel (LysoTracker) reducing potential biases
arising from directly aligning target structures.

CLEM-Reg plugin for napari

Napari is an open-source multidimensional image viewer for Python.
Itallows third-parties to develop plugins with additional custom func-
tionality”. The plugin allows users to automatically register vVCLEM
datasets with a single click of a button. It also includes the option to
execute and display intermediate steps of the full pipeline enabling
users to fine-tune their results. Various parameter configurations for
agivenstep canthusbe explored without needingtore-runtheentire
pipeline (Supplementary Fig. 3).

Arange of features are included in the plugin, such as the option
to delineate a corresponding ROl using the ‘Shapes’ layer in napari or
the option to choose between rigid (CPD) and nonlinear registration
(BCPD). Parameters such asthe FM segmentation settings, point cloud
sampling density and the maximum number of iterations for the point
cloudregistration can be tuned. Parameters can be saved and reused to
ensure reproducibility. Overlays can be directly exported from napari,
as well as the initial and transformed point clouds, for quality control
purposes. Intermediate outputs such as segmentation masks and
sampled point clouds can be directly visualized in the napari viewer
toaid troubleshooting. Itisalso possible to injectintermediate results
from external sources, for example, an FM segmentation method
froma different plugin, or a pre-existing EM segmentation mask. The
resulting ‘Labels’ layer canthen be set as aninput to subsequent steps
in CLEM-Reg. The results, usability and user-friendliness of the plugin
were assessed on three vCLEM datasets (EMPIAR-10819, EMPIAR-11537
and EMPIAR-11666).

Identifying TGN46-positive transport carriers with CLEM-Reg
To validate CLEM-Reg, a rare dynamic cellular process involving sub-
micron organelles and transport carriers was studied. Despite being
primarily localized to the TGN, a small subset of TGN46 (1-5%) rap-
idly cycles between the TGN and plasma membrane. The TGN46 exits
the TGN in ‘CARriers of the TGN to the cell Surface’ (CARTS), which
play arole in transport of plasma membrane proteins (for example,
desmoglein-I, a key component of desmosomes) and secretion (for
examplelysozyme C, pancreaticadenocarcinomaupregulated factor)
andrecycles back to the TGN viaendosomes® ¢, Leveraging the com-
plementary information derived from vCLEM, unambiguousidentifica-
tion of the subset of endosomes and transport carriers engagedinthe
process of trafficking TGN46 between TGN and plasma membrane was
demonstrated on two datasets (EMPIAR-10819 and EMPIAR-11537) with
CLEM-Reg (Fig. 6a,b). Labeling accuracy of endosomes with GFP-TGN46
signal was quantitatively assessed on EMPIAR-11537 (Extended Data
Fig. 6) with further quantifications demonstrating equivalent perfor-
mance on conventional resolution confocal microscopy data (Sup-
plementary Fig. 2c,d) shown in Extended Data Fig. 10.

By utilizing off-target landmarks (in this case, mitochondria)
to derive the warping matrix, precise and accurate overlays of fluo-
rescence to small target organelles were achieved, while minimizing
subjective errors that result from aligning fluorescence directly to
presumed target structures. Here, the overlays facilitated the iden-
tification of different morphological populations of TGN46-positive
CARTSindifferentcellular locations; small vesicular structures tended
tolocalizeinthe periphery, whereas complex membrane and vesicular
structures were closer to the perinuclear region (Supplementary Figs. 4
and5).Such functional labeling of organelles with submicron precision
has the potential to provide vital mechanistic information for arange
of biological processes.

Discussion

This study introduces CLEM-Reg, an automated and unbiased
end-to-end vCLEM registration framework, implemented as a dedi-
cated plugin for napari. The proposed registration approach relies
on extracting landmarks using classical image processing and deep
learning. After segmenting internal landmarks in FM and EM, point
clouds are sampled and preprocessed to obtain a memory-efficient,
modality-agnostic representation. Point cloud registration finds amap-
pingbetween the two image volumes, with which the FM acquisitionis
warped onto the EM volume to obtain afinal VCLEM overlay. CLEM-Reg
drastically reduces registration time to a few minutes and achieves
near expert-level performance on three benchmark vCLEM datasets.

CLEM-Reg’s potential in driving new biological insights is also
demonstrated. Correlation of small punctate structures, like the trans-
port carriers and endosomes studied herein, is challenging due to
the lack of characteristic morphologies. Thus, accurate correlation
requires precise and unbiased landmark-based alignment of off-target
structures, which CLEM-Reg automatically delivers across the whole
cell volume. Wakana et al. studied TGN46 carriers in two dimensions
using permeabilized cells*. CLEM-Reg, however, enables identifica-
tion of TGN46 carriersin 3D across whole cells with intact membranes.
Future work could build on these results by studying morphological
differences of transport carriersin their native state between healthy
and pathological cells. Since all registered datasets have been publicly
deposited, othersinterested in TGN46 trafficking can mine these data
tomore completely study instances of TGN46-positive CARTS. Overall,
these results highlight abroader concept for underpinning structure-
function studies with vCLEM.

Nevertheless, certain limitations remain with regard to the auto-
mated organelle segmentation in EM, which adversely impacts the
alignment performance when more than 40% of mitochondria are
missed during the segmentationstep (Extended Data Fig. 1a). Registra-
tion performance with CLEM-Reg is also more sensitive to the loss of
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@ TGN46 overlay on FIB-SEM data (EMPIAR-10819)

e [oariias

b TGN46 overlay on FIB-SEM data (EMPIAR-11537)

Fig. 6 | Identification of GFP-TGN46-positive endosomes and transport
carriers. a,b, Inaddition to the expected TGN localization of GFP-TGN46, GFP-
TGN46-positive endosomes and transport carriers were identified in EM guided
by overlays obtained with CLEM-Reg. Structures of interest are circled in green

and corresponding montages showing entire endosomes or transport carriers
are displayed. Images in montages are shown with a spacing of 40 nm (orange) or
50 nm (magenta and red) in z. Full montages with 10 nm spacing in z can be found
inSupplementary Figs. 4 and 5.

peripherallandmarks (Extended Data Fig. 1b) which is consistent with
previous work by Paul-Gilloteaux et al.”. While MitoNet was shown to
perform well on the three vCLEM datasets shown in this study, this
cannot be guaranteed for all vVEM datasets. For instance, to segment
mitochondriain SBF-SEM, preprocessing with contrast-limited adap-
tive histogram equalization was required (Methods). This is likely
due to the imbalanced dataset used to train MitoNet with 75.6% of
data acquired on FIB-SEM and only 5.2% on SBF-SEM microscopes®.

One approach to address this is to make use of transfer learning, a
deep-learning method in which already trained models are briefly
retrained on a smaller dataset to improve performance. While train-
ing deep neural networks previously required access to GPUs and
fluency in programming languages such as Python, open-source pro-
jects such as ZeroCostDL4Mic*’, Deeplmage]*, Imjoy** or DL4MicE-
verywhere* are rapidly removing these barriers, enabling GUI-driven
interaction witharange of deep-learning architectures. Open-source
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and community-driven model libraries such as the Bioimage Model
Zoo", which allow easy sharing of pretrained deep-learning models,
are anotherimportant resource.

CLEM-Regincludesthe optionto perform nonlinear alignment of
volumes using BCPD and 3D thin-plate-spline warping; however, rigid
registration applied to a FIB-SEM benchmark dataset outperforms
nonlinear registration (Extended Data Fig.4) and runs orders of magni-
tude faster (2.17 min versus 205 min to obtain overlays for all channels,
including mitochondria segmentation; Methods). While nonrigid reg-
istrationis often thought to deliver superior alignment performance,
boththeresults obtained here and previous work'" do not support this
assumption. A possible explanation for this counterintuitive finding
isthat better performance canbe achieved by restricting the degrees
offreedom, as the point cloud data from the two modalities areinher-
ently noisy and do not perfectly match. Thus, as noise increases due
tofactors suchas segmentation errors, non-isotropic pixel sizesin the
FM volume or point sampling, the nonlinear registration approach is
more prone to converging to nonoptimal solutions due to the larger
parameter space. Rigid registration restricts the degrees of freedom
and thus the parameter space, which facilitates convergence toward
anoptimal solution.

The size of bioimage datasets can also cause challenges for auto-
mated alignment. While the time required to register point clouds
follows a power law (Extended Data Fig. 3), segmenting and warping
image volumes scales cubically. Thus, downsampling of the EM dataset
is generally required before execution. Chunked data handling with
next-generation file formats (NGFFs)* in combination with tools such
as Dask*® could allow users to run the CLEM-Reg on full-resolution data
without encountering memory issues. Different use-cases will likely
require different resolutions for processing*’ (Extended Data Fig. 2).
Forinstance, segmentation of larger organelles such as mitochondria
and nucleican, in principle, be accurately performed on substantially
downscaled data, whereas smaller organelles require retention of
higher-resolution information. An appealing feature of NGFFs is that
they store data in an image pyramid of multiple resolutions, allowing
the selection of appropriate resolutions to accurately and efficiently
perform each task without requiring multiple copies. Additionally,
CLEM-Reg relies heavily on Scipy*® and scikit-image* for tasks such as
FM segmentation and point sampling of the FM and EM segmentation;
however, these packages do not natively provide GPU acceleration. As
such, future work toincorporate GPU accelerationinto the CLEM-Reg
workflow using Python libraries such as Cupy*° or clEsperanto® could
reduce processing time. This optimization could considerably acceler-
ate multiple steps within the CLEM-Reg workflow.

While CLEM-Reg’s ability to register vVEM techniques that image
the block face is demonstrated, other vEM methods such as array
tomography*? and serial section transmission electron microscopy
(ssTEM)* could be used given assufficiently accurate section-to-section
alignment; however, robust alignment of consecutive EM sections is
challenging, due to the nonlinear deformations associated with manual
sectioning and imaging, in particular by transmission electron micros-
copy (TEM). Currently, each section is finely aligned to the previous
section using manually placed landmarks on adjacent sections. This
process canintroduce bias and is extremely lengthy, requiring days of
anexpert’stime, andis, therefore, beyond the scope of this paper. We
speculate that methods based on registering segmented landmarks,
such as CLEM-Reg, could form part of aniterative pipeline toimprove
this section-to-section alignment by providing additionalinformation
about the quality of alignment.

While CLEM-Reg has been demonstrated to register single-cell
scale datawithmitochondriasegmentations, the core of the alignment
workflowis agnostic to the segmented landmarks. As such, the method
couldbe used at different scales or across different modalities as long as
certain conditions are met. These are the existence of asegmentation
algorithm for the same structure in both modalities, and that those

structures are numerous and distributed throughout the volume tobe
aligned. For example, nucleus segmentation algorithmsin EM and FM
could be used to derive point clouds to register tissue-scale volumes
for vCLEM, or nucleus segmentations in X-ray microscopy could be
used to align to EM or FM (or both). With the rapid development of
artificial intelligence-based segmentation methods®*, the range of
suitable target structures will likely continue to grow. These develop-
ments hold the promise of broadening the applicability of CLEM-Reg
to other multimodal registration tasks beyond vCLEM.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/541592-025-02794-0.
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Methods

Cell model

HelLa cells were obtained from the Cell Services Science Technology
Platformat The Francis Crick Institute and originated from the Ameri-
can Type Culture Collection (ATCC; CCL-2).

CLEM data acquisition

HelLa cells were maintained in Dulbecco’s modified Eagle medium
(Gibco) supplemented with 10% fetal bovine serum at 37 °C and 5%
CO.. A total 0of 150,000 cells were seeded in 35-mm photo-etched
glass-bottom dishes (MaTtek Corp). At 24 h, cells were transfected
with 0.1 pg of GFP-TGN46 construct per dish, using Lipofectamine
LTX and PLUS reagent (Invitrogen) in Opti-MEM medium (Gibco) as
recommended by the manufacturer. Then, 300 pl of transfection mix
were added to 2 ml antibiotic-free medium and incubated overnight.
At 36 h, cells were stained with LysoTracker red (100 nM) or Wheat
Germ Agglutinin (WGA) Alexa Fluor 594 (5 pg ml™) and MitoTracker
deep red FM (200 nM) for 10 min in HBSS (WGA) or 30 min in DMEM
(LysoTracker and MitoTracker). Hoechst 33342 (1 pg pl™") was added in
thelast 5 min of the tracker incubation. All probes were from Molecular
Probes (Thermo Fisher Scientific). Cells were then washed three times
with 0.1 M phosphate buffer, pH 7.4 and fixed with 4% (v/v) formalde-
hyde (Taab Laboratory Equipment) in 0.1 M phosphate buffer, pH 7.4 for
15 min. Cells were washed twice and imaged in 0.1 M phosphate buffer
on an AxioObserver 7 LSM900 with Airyscan 2 microscope with Zen
v.3.1software (Carl Zeiss). Cells were first mapped with a x10 objective
(NA 0.3) using brightfield microscopy to determine their position on
the grid and tile scans were generated. The cells of interest were then
imaged at high resolutionin Airyscan mode with a x63 oil objective (NA
1.4). Smart setup was used to set up the imaging conditions. A sequen-
tial scan of each channel was used to limit crosstalk and z-stacks were
acquired throughout the whole volume of the cells.

The samples were then processed using a Pelco BioWave Pro+
microwave (Ted Pella) following a protocol adapted from the National
Centre for Microscopy and Imaging Research protocol (https://
emcubed.org/wp-content/uploads/2017/11/ellismans_sbfsem_
sampleprep_protocol.pdf). Each step was performed in the Biowave,
except for the phosphate buffer and water wash steps, which consisted
of two washes on the bench followed by two washes in the Biowave
without vacuum (at250 W for 40 s). All the chemical incubations were
performed in the Biowave for 14 min under vacuum in 2-min cycles
alternating with/without 100 W power. The SteadyTemp plate was set
to 21 °Cunless otherwise stated. In brief, the samples were fixed again
in 2.5% (v/v) glutaraldehyde (TAAB)/4% (v/v) formaldehyde in 0.1M
phosphate buffer. The cells were then stained with 2% (v/v) osmium
tetroxide (TAAB) /1.5% (v/v) potassium ferricyanide (Sigma), incu-
bated in 1% (w/v) thiocarbohydrazide (Sigma) with SteadyTemp plate
set to 40 °C, and further stained with 2% osmium tetroxide in ddH,0
(w/v).The cells were thenincubated in1% aqueous uranyl acetate (Agar
Scientific) with a SteadyTemp plate set to 40 °C, and then washed in
dH,0 with SteadyTemp set to 40 °C. Samples were then stained with
Walton’slead aspartate with SteadyTemp set to 50 °C and dehydrated
inagraded ethanol series (70%, 90% and 100%, twice each), at 250 W
for 40 s without vacuum. Exchange into Durcupan ACM resin (Sigma)
was performedin 50%resinin ethanol, followed by four pure Durcupan
steps, at 250 W for 3 min, with vacuum cycling (on/offat 30-sintervals),
before polymerization at 60 °C for 48 h.

Focused ion beam scanning electron microscopy (FIB-SEM) data
were collected using a Crossbeam 540 FIB-SEM with Atlas 5 for 3D
tomography acquisition (Carl Zeiss). Asegment of the resin-embedded
cellmonolayer containing the cell ofinterest was trimmed out, and the
coverslip was removed using liquid nitrogen before mounting on a
standard12.7-mm SEM stub using silver paintand coating witha10-nm
layer of platinum. The ROl was relocated by briefly imaging through the
platinum coating at an accelerating voltage of 10 kV and correlating to

previously acquired FM images. On completion of preparation of the
target ROI for Atlas-based milling and tracking, images were acquired
at5 nmisotropicresolution throughoutthe cell ofinterest, using a 6-pus
dwelltime. During acquisition, the SEM was operated at an accelerating
voltage of 1.5 kV with 1.5 nA current. The EsB detector was used with a
grid voltage of 1.2 kV.lon beam milling was performed at an accelerat-
ingvoltage of 30 kVand a current of 700 pA.

For SBF-SEM, the block was trimmed to a small trapezoid, excised
from the resin block and attached to an SBF-SEM specimen holder
using conductive epoxy resin. Before the commencement of an
SBF-SEM imaging run, the sample was coated with a 2-nm layer of
platinum to further enhance conductivity. SBF-SEM data were col-
lected using a 3View2XP (Gatan) attached to a Sigma VP SEM (Carl
Zeiss).Inverted backscattered electronimages were acquired through
the entire extent of the ROI. For each of the 133 consecutive 50-nm
slices needed to image the cell in its whole volume, a low-resolution
overviewimage (horizontal frame width150.58 um; pixel size of 75 nm;
2-us dwell time) and a high-resolution image of the cell of interest
(horizontal frame width 63.13 pm; pixel size of 7 nm; using a 3-pus
dwell time) were acquired. The SEM was operated in high vacuum
with focal charge compensation on. The 30-pm aperture was used,
atanaccelerating voltage of 2 kV.

Preprocessing for CLEM registration

Airyscan data were first processed in Zen software using the Airys-
can processing tool, which consists in pixel reassignment followed
by Wiener filter deconvolution. The settings used were Auto-Filter
and Standard strength. The super-resolution Airyscan data was then
processed in Zen software using the z-stack alignment tool to correct
z-shift. The settings used were the highest quality, translation and linear
interpolation, with the MitoTracker channel as areference. The .czifile
was then opened in Fiji** and saved as a .tif file. For EMPIAR-11666, the
MitoTracker channel was further processed using Yen'’s thresholding
method®® to remove overexposed punctate artifacts affecting FM
segmentation. For the unprocessed dataused in Extended DataFigs. 5
and 10, the Airyscan data were first aligned in Zen software using the
z-stack alignment tool to correct z-shift, The .czifile was then opened
inFiji. Onour system, the raw datasize isreduced by grouping the data
from the 32 parts of the Airyscan detector into four concentric rings,
which appear as four time pointsin Fiji. Here, the first time point, which
correspondsto the central area of the Airyscan detector, was selected
and thefile saved as a .tif format.

After initial registration with template matching by normalized
cross-correlationinFiji (https://sites.google.com/site/qingzongtseng/
template-matching-ij-plugin), the FIB-SEM images (EMPIAR-10819
and EMPIAR-11537) were contrast normalized as required across the
entire stack and converted to eight-bit grayscale. To fine-tune image
registration, the alignment to the median smoothed template method
was applied”. The aligned xy 5-nm FIB-SEM stack was opened in Fiji and
resliced from top to bottom (toxz orientation) and rotated to roughly
match the previously acquired Airyscan data. Finally, the EM volume
was binned by a factor of 2 and 4 in x, y and z using Fiji resulting in an
isotropic voxel size of 10 and 20 nm, respectively.

For the SBF-SEM data (EMPIAR-11666), only minor adjustments
in image alignment were needed, carried out using TrakEM2 in Fiji’®.
Finally, the EM volume was binned by afactor of2and 4 inxyto obtain
avoxel size of 14 x 14 x 50 nm and 28 x 28 x 50 nm, respectively.

Computational resources

Thealgorithms described here were primarily developed and tested on
aportable machine runningonaLinux distribution with the following
specifications: 64 GBRAM, Intel Core i7-11850H 2.50 GHz x 16 CPU and
GeForce RTX 3080 GPU. Anadditional workstation with the following
specifications was also used for testing: 256 GB RAM, Dual Intel Xeon
(14 CPU each) 2.6 GHz, Quadro M600 16 GB GPU.
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FM segmentation with thresholded Laplacian of Gaussian

To ensure the FM pixel values were in the range of 0 and 1, min-max
normalization of the following formula was used, where x is the FM
volume, x;, is the lowest pixel value in the volume, x,,,, is the largest
pixel value in the volume and x,.,.q is the resulting scaled volume
XEmin_In the subsequent step, the scaled FM volume

Xscaled = pra——
undergoes a LoGfiltering process, requiring one tunable parameter o.
This process involves convolving a one-dimensional difference of
Gaussians (DoG) across the x, y and z planes of the volume. Marr and
Hildreth*® demonstrated that a reasonable approximation of LoG can

beattained by maintaining aratio of% =l.6whenapplyingthe DoG. A

value of o = 3.0 was used for EMPIAR-10819 and EMPIAR-11537, thus
afterapplyingthe LoGratio, o, = 3.0and o, = 4.8. Adynamicthreshold
based onarelative user-defined threshold and the meanintensity of a
given slice was then applied to each image in the resulting volume to
account forinconsistencies arising due to attenuation of the signal at
deeper imaging levels. The relative threshold was set to 7= 1.2 for
EMPIAR-10819 and EMPIAR-11537. For EMPIAR-11666, the following
parameters were used: o = 2.2 and T = 1.3. Last, to reduce the number
of spurious segmentations, a size-based filter was then applied. This
was achieved by using a3D connected components algorithm fromthe
Python package cc3d (v.3.2.1)°°, which removes components below a
user-defined size threshold with a default value set to remove all seg-
mentations with asize below the 5th and above the 95th percentile.

EM segmentation with MitoNet

The mitochondriawithinthe EM volume were segmented using a pre-
trained MitoNet deep-learning model®’. The MitoNet model using its
default parameters was applied to EM volumes in EMPIAR-10819 and
EMPIAR-11537 without preprocessing, resulting ininstance segmenta-
tion of the mitochondria. Toimprove mitochondrial segmentation of
EMPIAR-11666, the aligned stack was processed for contrast-limited
adaptive histogram equalization® using the enhance local contrast
(CLAHE) plugininFiji, using the following parameters: block size =127;
histogram bins = 256; maximum slope = 2, 3 and 10; mask = “*None*“;
fast. Each CLAHE stack (from three maximum slope values) was seg-
mented using MitoNet and the masks were merged by summation
before point cloud sampling.

Point cloud sampling of the EM and FM segmentation

The method employed for producing point clouds from the FM and
EM volumes uses the same standardized procedure. First, the FM and
EM segmentation masks were resampled to obtain isotropic voxels
(EMPIAR-10819 and EMPIAR-11537,20 nm; EMPIAR-11666, 50 nm). Then,
a Canny edge filter®® with a default value of 6 =1.0 was applied to each
binary segmentationsslice. This process ensures that only pointsonthe
edge of the outer mitochondrial membrane are randomly sampled.
Then, every pixel along the membrane was identified as a potential
pointto be used within the point cloud, but due to the computationally
expensive nature of point cloud registration algorithms, subsequent
downsampling was carried out.

Point cloud downsampling and registration with CPD

and BCPD

After sampling, the point clouds were downsampled, binned and fil-
tered by removing statistical outliers to reduce memory requirements
and noise. Downsampling of the point clouds was performed by a
uniform downsampling function which takes the point cloud and
user-defined sampling frequency 1/k as the input and samples every
k™ pointinthe point cloud, starting with the 0 point, then the k' point,
thenthe k + k™ point and so on. A value of k = 30 was used for all data-
sets. Following the initial downsampling, abinning step was used which
employsaregular voxel grid to create adownsampled point cloud from
theinput point cloud. There are two primary steps of the binning start-
ing with an initial partitioning of the point cloud into a set of voxels.

Subsequently, each occupied voxel generates exactly one point
through the computation of the average of all the points enclosed
within it, resulting in a binned version of the original point cloud.
Avoxelsizeof s = 15 x 15 x 15 pixels was used for all datasets. For reg-
istration, the Python package probreg (v.0.3.6)%* was used, asitimple-
ments both the CPD*® and BCPD” algorithm with a unified API. For all
datasets, rigid CPD with 50 iterations was used to obtain globally reg-
istered point clouds of the FM to the EM. The found transformation
matrix is then used for the warping of the image volumes. Note that
the transformation matrix is computed in pixels, but conversion to
physical units can be achieved by an appropriate scaling factor of the
translation vector.

Warping of image volumes

The transformation matrix found from the global point cloud registra-
tionwas applied to the sourceimage volume using the affine transform
implementation provided by SciPy (v.1.10.1)*%, a powerful open-source
Python library that provides a range of functions for mathematics,
science and engineering. This implementation makes use of inverse
projection tointerpolate theintensity values of the warped image thus
requiring an inverted transformation matrix, which is found with
NumPy’s (v.1.24.2)* linear algebra module. Interpolation of the warped
image was achieved with higher-order splineinterpolation. Nonlinear
image warping was achieved with thin-plate spline deformation which
finds a mapping between a set of control points f: (x,y,2) —» (x',)',2)
such that the deformed source points match the target points as closely
as possible while ensuring that theimage between these control points
remains smooth. As there are no open-source implementations for
volumetric thin-plate spline warping available for Python, a custom
script was implemented based on ref. 38. To reduce computational
overhead, the FM volume was nonlinearly warped as eight individual
chunks. After warping, FM volumes were resampled to map to
the EM space.

Benchmarking of CLEM-Reg against experts

For expert manual registration, image stacks from FM and EM were
manually aligned to each other using the BigWarp plugin of the Fiji
framework, with the EM stack set as ‘target’and the FM stack as ‘mov-
ing’ dataset. Corresponding points were placed on mitochondria on
both datasets and throughout the whole volume of the cell. An affine
transformation was applied to the FM data and the transformed dataset
was merged with the EM data to produce the final overlay.

Due to the inherent differences in appearance between the two
imaging modalities, direct intensity-based quantification of the reg-
istration performance is not possible. Therefore, two metrics were
introduced to assess registration performance: fluorescent signal
overlap to EM structures and centroid distance between fluorescent
signal and target structures.

First, targetstructures (lysosomesin EMPIAR-10819 and EMPIAR-
11666 and endosomes in EMPIAR-11537) were manually segmented in
3Dinthe EMvolumein TrakEM2 in Fiji. These lysosomes or endosomes
were then cropped with abounding box encompassing the fluorescent
signal from the corresponding manual- or CLEM-Reg-warped FM vol-
umes and then segmented using the Otsu thresholding method® to
generate the correlating FM segmentation.

Segmentations were transformed from the pixel space to real
space by applying appropriatescaling. Theintersected volumebetween
fluorescent and EM segmentations was then computed. Centroid
distances were obtained by first constructing meshes from segmenta-
tions using marching cubes. Then, centroids were determined on
meshes derived from fluorescent and EM segmentations and their
Euclidean distance calculated. The size of segmented target structures
(Ilysosomes or endosomes) was estimated by computing characteristic
length scales L from the volume of the segmented target structures v
with L =3/V.
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Plugin development and deployment

The plugin was developed for Python (v.3.9) and was built with napari
(v.0.4.17)%. It integrates the CLEM-Reg workflow in the form of asingle
widget running end-to-end and as a set of individual widgets, each
carrying out an individual step (split registration functionality). The
EMPIAR-10819 dataset can directly be loaded as sample data from
the plugin. To distribute the plugin and make it accessible from the
napariinterface, the projectis packaged using the cookiecutter plugin
template provided by napari. The plugin is available for installation
via the package installer for Python (pip) in the command line under
the project name ‘napari-clemreg’. The plugin can also be installed via
the built-in plugin menu which lists all plugins currently available on
napari-hub. The source codeis available asa GitHub repository along-
side a detailed project description, installation instructions and user
guide. Additionally, a Jupyter notebook is provided to demonstrate
headless execution of the workflow without the napari GUI.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets used in this study have been deposited at EMPIAR and
Biostudies. EMPIAR-10819, EM (https://www.ebi.ac.uk/empiar/
EMPIAR-10819/) and FM (https://www.ebi.ac.uk/biostudies/bioim-
ages/studies/S-BSST707). EMPIAR-11537, EM (https://www.ebi.ac.uk/
empiar/EMPIAR-11537/) and FM (https://www.ebi.ac.uk/biostudies/
bioimages/studies/S-BSST1075); and EMPIAR-11666, EM (https:/www.
ebi.ac.uk/empiar/EMPIAR-11666/) and FM (https://www.ebi.ac.uk/
biostudies/bioimages/studies/S-BSST1175).

Code availability
Codefor CLEM-Reg (under MIT license) is available on GitHub (https://
github.com/krentzd/napari-clemreg).
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Extended Data Fig. 1| Benchmarking registration robustness to missing
mitochondria. The normalized root mean squared error (NRMSE) was computed
between manually and automatically obtained overlays with CLEM-Reg as a
function of the percent of missing mitochondriain the EM segmentation mask.

A fixed voxel size of 10 and sampling frequency of 1/128 was kept for the point
cloud generation. (a) Mitochondria were randomly removed by identifying

mitochondrial instances with connected components and then removing
mitochondria with the probability indicated on the x-axis. (b) Mitochondria were
removed with a probability indicated on the x-axis in three areas with increasing
distance from the center of the image volume (‘central’in blue, ‘intermediate’in
orange and ‘peripheral’ ingreen).
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Extended Data Fig. 2 | Benchmarking registration performance for varying sizes (pixels) across all three benchmark datasets. (a) NRMSE computed on

point cloud sampling parameters. The normalized root mean squared error target channels (EMPIAR-10819 and EMPIAR-11666: Lysotracker; EMPIAR-11537:
(NRMSE) was computed between manually and automatically obtained overlays GFP-TGN46) and registration time. (b) NRMSE computed on off-target landmark
with CLEM-Reg for a decreasing number of sampled points and increasing voxel channel (Mitotracker).
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The parameters governing the power law y = bx™that relates the number of
sampled points to the registration time were estimated with values for the
exponent mranging between1.47 and 1.69.
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Extended Data Fig. 5| Comparing alignment results between overlays
obtained with CLEM-Reg using raw (unprocessed confocal-like) and processed
(super-resolved) Airyscan FM data against overlays obtained by an expert.

(a, e) Overlays for EMPIAR-10819 (A: FIB-SEM with Mitotracker, Lysotracker,
GFP-TGN46 and Hoechst overlaid) and EMPIAR-11666 (I: SBF-SEM with
Mitotracker, Lysotracker, GFP-TGN46 and Hoechst overlaid). (b,f) Volume of
lysosomes in EM overlaid by FM signal was computed by intersecting EM with FM
segmentations from raw (blue) and Airyscan (orange) FM overlays obtained with
CLEM-Reg and Airyscan FM data overlaid by an expert (green). (c,g) Centroid
distances between EM segmentations and segmented Lysotracker signal in FM

were computed with Euclidean distance. Airyscanis shownin orange, raw FM
datainblue and Airyscan overlaid by an expert with BigWarp in green. Mean size
of FM for raw data (indicated by R) and Airyscan data (indicated by AS) and EM
segmentations are shown in magenta for FM and gray for EM (n = 5lysosomes
incand n=4lysosomesing). (d,h) 3D visualizations of lysosome overlays

were generated by obtaining meshes from segmentations of EM shown in gray,
Lysotracker signal registered using BigWarp (Manual) shown in green, CLEM-Reg
onraw datashowninblue and on Airyscan datashown in orange. Corresponding
centroid distances are shown next to each lysosome visualization.
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Extended Data Fig. 7 | Correlating lysosomes and endosomes to the distance
to mitochondria. We obtained distances of lysosomes or endosomes to
mitochondria by computing a distance transform on the 3D mitochondria
segmentation masks. Distances of lysosomes or endosomes were then

was then assessed via centroid distances as shown in Figs. 5c and 5h, as well as
Supplementary Fig. 4C. Spearman’s correlation was then applied with values
shown on the top right hand side corner for each dataset (n = 5 lysosomes for
EMPIAR-10819, n = 4 endosomes for EMPIAR-11537 and n = 4 lysosomes for

obtained by considering the previously obtained distance transform at the

EMPIAR-11666).

centroid of manual lysosome/endosome segmentations. Alignment accuracy
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Extended Data Fig. 8| Comparing CLEM-Reg against manual alignment with
BigWarp onlandmarks placed in BigWarp. (a,b,c) Violin plots showing
Euclidean distances computed between landmarks placed in EM and landmarks
placedin LM transformed by CLEM-Reg (red) and BigWarp (blue). The difference
indistance between landmarks transformed by CLEM-Reg and BigWarp are
shown in orange. Mean distances are shown as horizontal bars. Statistical
significance was computed with Student’s t-test (EMPIAR-10819: P = 0.16,
EMPIAR-11537: P = 0.0025and EMPIAR-11666: P = 4.52 - 10"°) with n.s
indicating P> 0.05, * indicating P < 0.01and ***indicating P < 0.0001.

(d) Sensitivity analysis of point placement precision: Landmarks were randomly

perturbed by addition of Gaussian noise with 1 = 0 and o corresponding to
random landmark placement errors in pixels. Euclidean distances between
randomly perturbed landmarks placed in EM and LM transformed by CLEM-Reg
and BigWarp were then computed as shownin a,b and ¢ (measurements for each
pixel perturbation were repeated n =1,000 times). Lines correspond to mean
P-values and shaded areas to standard deviations. (e,f) Representative crops of
corresponding landmarks placed in EM (e) and LM (F: Mitotracker channel
shown) with circles of radius r =3 (red dotted lines) and r= 5 (red dashed lines)
shown.
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Extended Data Fig. 9| Error maps between landmarks placed in EM and LM
landmarks transformed with CLEM-Reg. (a) Landmarks manually placed inLM
were transformed with the transformation matrix computed by CLEM-Reg (red)
and BigWarp (blue). To convert discrete points to a continuous map, a thin-plate
spline (TPS) deformation model was computed using landmarks placed in EM
(orange) and LM landmarks transformed with the CLEM-Reg matrix (red) as
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control points. To obtain error maps, the mean squared displacement based

on the TPS model was computed across the whole image volume and average
projections are shown for EMPIAR-10819 (b) EMPIAR-11537 (¢) and EMPIAR-11666
(d) with points corresponding to landmarks placed in EM (orange) and in LM

transformed with CLEM-Reg (red) and BigWarp (blue). Maximum projections of
cell outlines are shown in white.
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Extended Data Fig. 10 | Comparing alignment results between overlays
obtained with CLEM-Reg using raw (unprocessed, confocal-like) and
processed (super-resolved) Airyscan FM data against overlays obtained by
an expert. (a) Overlays for EMPIAR-11537 (FIB-SEM with Mitotracker, WGA,
GFP-TGN46 and Hoechst overlaid) (b) Volume of endosomes in EM overlaid

by FM signal was computed by intersecting EM with FM segmentations from
raw (blue) and Airyscan (orange) FM overlays obtained with CLEM-Reg and
Airyscan FM data overlaid by an expert (green). (c) Centroid distances between
EM segmentations and segmented GFP-TGN46 signal in FM were computed
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with Euclidean distance. Airyscan is shown in orange, raw FM data in blue and
Airyscan overlaid by an expertin green. Mean size of FM for raw data (indicated
byR) and Airyscan data (indicated by AS) and EM segmentations are shownin
magenta for FM and gray for EM (n = 4 endosomes). (d) 3D visualizations of
endosome overlays were generated by obtaining meshes from segmentations of
EM shownin gray, GFP-TGN46 signal registered using BigWarp (Manual) shown
ingreen, CLEM-Reg on raw data shown in blue and on Airyscan datashown in
orange. Corresponding centroid distances are shown next to each endosome
visualization.
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biostudies/bioimages/studies/S-BSST1075). EMPIAR-11666: EM (https://www.ebi.ac.uk/empiar/EMPIAR-11666/) FM (https://www.ebi.ac.uk/biostudies/
bioimages/studies/S-BSST1175).
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Data exclusions  No data were excluded

Replication Workflow was executed with a variety of input parameters
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Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)
Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

Plants

Hela cells, from Cell Services STP at the Francis Crick Institute
Not authenticated
Not tested

No commonly misidentified cell lines

Seed stocks N/A

Novel plant genotypes  N/A
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