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CLEM-Reg: an automated point cloud-based 
registration algorithm for volume correlative 
light and electron microscopy
 

Daniel Krentzel    1,2  , Matouš Elphick    2,3,4,5, Marie-Charlotte Domart2, 
Christopher J. Peddie    2, Romain F. Laine6,9, Cameron Shand    7, 
Ricardo Henriques    6,8, Lucy M. Collinson    2 & Martin L. Jones    2 

Volume correlative light and electron microscopy (vCLEM) is a powerful 
imaging technique that enables the visualization of fluorescently labeled 
proteins within their ultrastructural context. Currently, vCLEM alignment 
relies on time-consuming and subjective manual methods. This paper 
presents CLEM-Reg, an algorithm that automates the three-dimensional 
alignment of vCLEM datasets by leveraging probabilistic point cloud 
registration techniques. Point clouds are derived from segmentations of 
common structures in each modality, created by state-of-the-art open-source 
methods. CLEM-Reg drastically reduces the registration time of vCLEM 
datasets to a few minutes and achieves correlation of fluorescent signal to 
submicron target structures in electron microscopy on three newly acquired 
vCLEM benchmark datasets. CLEM-Reg was then used to automatically 
obtain vCLEM overlays to unambiguously identify TGN46-positive transport 
carriers involved in protein trafficking between the trans-Golgi network and 
plasma membrane. Datasets are available on EMPIAR and BioStudies, and a 
napari plugin is provided to aid end-user adoption.

Correlative light and electron microscopy (CLEM) is a powerful 
imaging technique that seeks to capitalize on the advantages of light 
microscopy (LM) and electron microscopy (EM) while circumventing 
the drawbacks of each. This has made CLEM the imaging technique 
of choice to target rare and dynamic biological events that require 
structural analysis at high resolution1,2. Fluorescence microscopy 
(FM) is an LM imaging modality that generates contrast by tagging 
macromolecules in living cells and tissues with fluorescent proteins, 
enabling dynamic observation of their biological interactions; how-
ever, due to the diffraction limit of light, traditional FM cannot achieve 
a resolution better than around 200 nm, hindering fine structural 
details from being resolved3. While super-resolution techniques can 

surpass this diffraction limit, such methods require specialized instru-
ments, specific sample preparation and imaging protocols, impos-
ing additional constraints on the type of biological events that can 
be imaged4. Moreover, FM generally tags specific macromolecules, 
providing excellent molecular specificity; however, unlabeled struc-
tures cannot be observed. EM addresses these limitations, achieving 
orders of magnitude higher resolution while revealing the underlying 
biological context5 in exquisite detail, but at the cost of a smaller field 
of view (FOV) and the lack of molecular specificity. By harnessing the 
complementary information derived from the correlation of LM and 
EM, CLEM has led to a variety of biological discoveries, such as estab-
lishing the structure of tunneling nanotubes in neurons6, observing 
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structures in each modality. To achieve this aim, a workflow to seg-
ment mitochondria was developed. Mitochondria were chosen spe-
cifically because they are abundant and typically well distributed 
across cells, and easily imaged in both FM and EM, enabling robust 
matching across modalities. Various segmentation approaches are 
routinely used in microscopy, ranging from classical image processing 
techniques9,19,20 to machine learning21–23. Depending on the complexity 
and density of structures in the image at hand, different algorithms are 
appropriate. For instance, mitochondria segmentations in FM images 
can be obtained by filtering, thresholding and further downstream 
image processing19, while automatically segmenting EM data typically 
requires deep learning. Common deep-learning architectures such as 
‘U-Net’24 can be trained to very good effect, but the burden of obtaining 
sufficient ground truth data presents a huge challenge, often requir-
ing substantial amounts of expert effort or crowdsourcing of manual 
annotations23. Recently, however, pretrained ‘generalist’ models such 
as MitoNet25, based upon a ‘Panoptic-DeepLab’ architecture26, are 
able to provide out-of-the-box performance levels for mitochondrial 
segmentation in EM that are sufficient for many tasks, with the option 
to fine-tune where necessary.

After segmentation, points are equidistantly sampled from the 
surface of the mitochondria segmentations in both the FM and EM 
volumes, resulting in a ‘point cloud’ for each modality. Point clouds 
are an attractive modality-agnostic representation due to their inher-
ent sparsity and the availability of a range of performant registration 
algorithms16,27–29; however, unlike manually generated pairs of points, 
there is no guarantee of a one-to-one precise spatial correspondence 
between points in the different modalities. The coherent point drift 
(CPD)27 algorithm overcomes this limitation by casting the alignment 
task as a probability density estimation problem, thereby removing 
the constraint of strict point correspondences.

Assessing registration performance in vCLEM overlays is challeng-
ing. Unlike in the medical imaging field where multimodal registration 
of MRI and CT scans is achieved by minimizing mutual information 
(MI)30, no equivalent metrics exist to compare FM and EM volumes. This 
lack of metrics is an important hurdle in automating vCLEM alignment 
and evaluating registration performance. Currently, vCLEM overlay 
quality is assessed by experts via visual inspection, oftentimes by the 
same person that generated the alignment.

The aim of vCLEM experiments is to functionally label ultrastruc-
ture in EM with fluorescent signal. These structures can range from 
microns to a few nanometers in size. To test the limits of CLEM-Reg, 
registration performance was assessed on some of the smallest 
known organelles, namely lysosomes, which have a size of 0.3–1 µm  
(refs. 31,32). To quantify registration performance, two new metrics 
based on the correlation of fluorescent signal (LysoTracker) to submi-
cron target structures (lysosomes) in EM are introduced here. Specifi-
cally, the volume of lysosomes overlaid by fluorescence was computed 
and centroid distances between fluorescent signal and lysosomes 
calculated. Manual registration by an expert was used as a baseline for 
assessing the performance of CLEM-Reg.

Performance quantification was conducted on two newly 
acquired vCLEM benchmark datasets using two different EM modali-
ties: focused ion beam scanning electron microscope (FIB-SEM) and 
serial block-face scanning electron microscope (SBF-SEM). A third 
vCLEM dataset was acquired to investigate a rare and dynamic cellular 
process involving submicron organelles. TGN46 (TGN38 in rodents) 
has previously been observed in transport carriers involved in pro-
tein trafficking between the trans-Golgi network (TGN) and plasma 
membrane33–36. These transport carriers are rare, as they account 
for only 1–5% of the total TGN46 signal36. Here, CLEM-Reg is used to 
automatically register the GFP-TGN46 signal to EM ultrastructure 
in three dimensions, facilitating accurate identification of TGN46 
transport carriers that would have been missed by visual inspection 
of the EM volume alone.

blood vessel fusion events in zebrafish2 and localizing tuberculosis 
bacteria in primary human cells1.

Typically, CLEM data are obtained by sequentially imaging a sam-
ple in FM and then EM. First, relevant structures are tagged with organic 
dyes or fluorescent proteins, and a volumetric image stack is acquired 
using FM. The sample is fixed with crosslinkers, either before or after 
the FM imaging, to conserve structural features. It is then stained with 
heavy metal salts to introduce contrast, dehydrated, embedded in 
resin and trimmed to the region of interest (ROI)7. In volume EM (vEM), 
layers of the embedded sample are physically removed and either the 
face of the block or the sections themselves are imaged in EM to obtain 
an image volume5. This results in two corresponding image stacks, 
one from FM and one from EM, each containing complementary data 
from the same physical region of the sample, but typically imaged 
in different orientations. In addition to this orientation mismatch, 
the sample preparation and imaging can introduce both linear and 
nonlinear deformations between the FM and EM image volumes. To 
correlate the FM signal to the ultrastructure in EM, image volumes need 
to be registered. Due to the stark differences in resolution, contrast 
and FOV between FM and EM, this is a challenging task that cannot be 
approached with intensity-based methods that are routinely used for 
aligning data from visually similar modalities, for example magnetic 
resonance imaging (MRI) and computed tomography (CT).

There are two general approaches to solving this problem. The 
first approach is to process one or both images such that they share 
a similar visual appearance, for example, by directly converting 
across modalities8–10 or by constructing a shared modality-agnostic 
representation11,12. Once the processed image stacks are sufficiently 
similar in visual appearance, traditional intensity-based registration 
techniques, such as those employed in medical imaging13, can be 
used to automatically align the two datasets. The second approach 
uses a landmark-based method, such as those implemented in soft-
ware tools like BigWarp14 and eC-CLEM15. These tools rely on manu-
ally identifying precise spatial regions visible in both modalities, for 
example, small subcellular structures or prominent morphological 
features. By manually placing a landmark at an identical physical 
position in each modality, spatial correspondences can be estab-
lished. From these landmarks, the transformation between image 
volumes can be computed1, bringing them into alignment via an 
iterative optimization process16,17. Methods to automate alignment 
via detection of cell centroids in LM and EM18 or semi-automated 
feature detection (for example AutoFinder in eC-CLEM15) have 
been developed; however, such methods are often restricted to 
two dimensions or limited to relatively coarse alignment, requiring 
subsequent manual refinement. Moreover, deep-learning-based 
methods that convert across modalities8 or construct a shared 
modality-agnostic representation12 require large amounts of aligned 
ground truth data. Due to the low throughput and required exper-
tise of manual volume CLEM (vCLEM) alignment, generating such 
ground truth data is challenging.

An important advantage of landmark-based approaches is the 
inherently sparse representation, which substantially reduces memory 
and computational requirements compared to intensity-based regis-
tration techniques that must generally hold both image volumes in 
working memory; however, this manual landmark selection step is 
laborious and time-consuming, severely impacting throughput and 
potentially introducing bias, as the target structure may be directly 
used for registration. To avoid such biases, landmarks used for regis-
tration should be different from the target structures being studied 
wherever possible, taking care to ensure color-correction between 
the channels in FM to avoid spectrally induced shifts in focal depth. 
Due to these limitations, robust and objective automation of landmark 
detection is highly desirable.

Here, CLEM-Reg is introduced, an automated vCLEM registra-
tion algorithm that relies on extracting landmarks from common 
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Results
Benchmark dataset acquisition
To assess the performance of CLEM-Reg against an expert, three 
benchmark vCLEM datasets (EMPIAR-10819, EMPIAR-11537 and 
EMPIAR-11666) of human cervical cancer epithelial (HeLa) cells were 
acquired. Mitochondria (MitoTracker Deep Red), nucleus (Hoechst 
33342), Golgi apparatus protein TGN46 (GFP-TGN46) and lysosomes 
(LysoTracker red) in EMPIAR-10819 and EMPIAR-11666 and plasma 
membrane (WGA) in EMPIAR-11537 were tagged to enable unbiased 
registration performance assessment on target structures. After imag-
ing the samples with a Zeiss Airyscan LSM900 microscope, two cor-
responding EM volumes (EMPIAR-10819 and EMPIAR-11537) with an 
isotropic voxel size of 5 nm were acquired in a FIB-SEM. The EM volume 
in EMPIAR-11666 was acquired in an SBF-SEM (7 nm in xy and 50 nm  
in z). The acquired images were prealigned to the nearest orthogo-
nal rotation following a routine image processing workflow in Fiji  
(Methods and Fig. 1a).

The CLEM-Reg pipeline
CLEM-Reg automatically aligns vCLEM data by segmenting mitochon-
dria in FM and EM, generating point clouds and registering them with 
CPD27,28, a state-of-the-art point cloud registration technique. The FM 
volume is then warped onto the EM volume using the found transfor-
mation (Fig. 1b). To aid adoption, CLEM-Reg is deployed as a plugin 
(‘napari-clemreg’) for the napari image viewer37, giving users the option 
for a single-click end-to-end operation, or to fine-tune or even entirely 
replace individual workflow steps (for example, importing segmenta-
tions; Fig. 1c).

Segmenting internal landmarks
A promising approach to automating vCLEM registration is to auto-
matically identify internal landmarks, speeding up the process and 
minimizing inadvertent subjective bias. CLEM-Reg relies on segmenting 
these common internal landmarks in both imaging modalities. Here, 
mitochondria were used as landmarks.

To obtain segmentations in FM, an algorithm based on combin-
ing a three-dimensional (3D) Laplacian of Gaussian (LoG) filter with 
dynamic thresholding to account for signal degradation at deeper 
imaging levels was developed. The algorithm requires two parameters 
to be adjusted: kernel size and relative segmentation threshold. After 
obtaining an initial segmentation mask, spurious segmentations are 
removed with a size-based filter (Fig. 2a).

Mitochondria segmentations in EM are obtained with a pretrained 
MitoNet25 deep-learning model, which was found to perform well on 
FIB-SEM data out-of-the-box (Fig. 2b) and required slight preproc-
essing for SBF-SEM data (Methods). CLEM-Reg’s robustness to miss-
ing mitochondria segmentations in the EM volume was estimated 
by randomly removing segmentations (Extended Data Fig. 1a). The 
registration accuracy of CLEM-Reg was constant up to a loss of around 
40% of segmented mitochondria in EM. The impact of segmentation 
errors in different areas of the EM volume was also assessed (Extended 
Data Fig. 1b). Registration performance was most impacted by the 
loss of peripheral segmentations. While mitochondria were used as 
off-target landmarks here, note that CLEM-Reg is not restricted to 
using mitochondria segmentations and can be used with previously 
obtained EM segmentation masks of other structures or organelles 
(for example, nuclear envelope).

Generating modality-agnostic point clouds and registration
The alignment between the FM and EM segmentations can be inferred 
by sampling 3D point clouds from the previously obtained segmenta-
tion masks. This reduces the computational load for large datasets 
and allows for mistakes in the segmentation to be ignored by using a 
probabilistic registration algorithm, such as CPD. The extraction of 
pixel coordinates from the exterior of the segmentation masks results 

in a 3D point cloud. The number of points in both point clouds depends 
on two parameters: binning and downsampling factor (Fig. 3a). Increas-
ing any of these two parameters speeds up the registration, potentially 
by orders of magnitude. For instance, reducing the point sampling 
frequency from 1/16 to 1/256 with a fixed voxel size of 10 × 10 × 10 pixels 
(points within each voxel are averaged to generate one point) leads to 
a 19-fold decrease (from 33.7 min to 1.8 min) in registration time with 
no change in registration performance on EMPIAR-10819 (Extended 
Data Fig. 2). Indeed, the time required to register point clouds follows 
a power law (Extended Data Fig. 3) with an exponent ranging between 
1.47 and 1.69 which implies that doubling the number of sampled points 
increases the time required for registration by a factor of 21.47 to 21.69.

After sampling, the point clouds are registered using either rigid 
CPD, affine CPD or nonlinear Bayesian CPD (BCPD) (Fig. 3b)27. Note that 
these probabilistic methods are necessary29, as the sampled points 
are not paired across modalities. The choice of registration algorithm 
depends on the expected deformations between the FM and EM vol-
umes, as well as computational constraints. In general, rigid CPD is 
faster and computationally less expensive than nonlinear BCPD.

Warping FM volume to obtain vCLEM overlay
Once point clouds are registered, the found transformation is used 
to warp the FM volume onto the EM volume. This step is fast for rigid 
transformations but orders of magnitude slower for nonlinear warping. 
CLEM-Reg implements 3D nonlinear thin-plate spline warping38 that 
uses the initially sampled and registered FM point clouds as control 
points. The runtime of the thin-plate spline warping depends on the 
interpolation order and size of the approximate grid. As thin-plate 
spline warping is an expensive algorithm, CLEM-Reg also implements 
the option to sequentially warp subvolumes. While this extends the 
runtime of the warping step, it reduces the required random-access 
memory (RAM). Notably, overlays obtained with rigid alignment 
(Fig. 4a–c) outperformed nonlinear alignment on the three benchmark 
datasets (Extended Data Fig. 4).

Assessing CLEM-Reg performance against experts
Due to the lack of existing metrics for vCLEM alignment, two metrics 
were introduced to holistically assess registration performance: fluo-
rescent signal overlap to EM structures and centroid distance between 
fluorescent signal and target structures. Additional quantification was 
conducted on manually placed landmarks in the LM and EM volumes.

For the correlation of fluorescence to FIB-SEM data, five target 
structures (lysosomes) were manually segmented in EM. The selected 
lysosomes varied in size (0.029–0.522 µm³) and were distributed across 
the cell volume (Supplementary Fig. 1a,b).

To obtain CLEM-Reg overlays of the LysoTracker channel, off-target 
landmarks (mitochondria) were used for registration. This reduces bias 
that results from aligning fluorescence directly to presumed target 
structures. Registration with CLEM-Reg took 5.52 min (from starting 
registration to obtaining warped overlays for all channels, including 
mitochondria segmentation) on a portable machine (Methods). Manual 
registration was performed with BigWarp by an expert with access to 
all fluorescent channels requiring approximately 2 h (Fig. 5a).

The volume of segmented lysosomes in EM overlaid by LysoTracker 
signal was computed by first segmenting the LysoTracker channel 
with Otsu thresholding39 and then computing the intersected volume 
between both segmentations. It was found that all lysosomes seg-
mented in EM were overlaid with the LysoTracker signal regardless of 
size (Fig. 5b). Notably, even the smallest lysosome with a volume of 
0.029 µm³ was labeled with fluorescence, showing correct correlation 
well below the diffraction limit.

Next, centroid distances between segmented LysoTracker signal 
and lysosome segmentations were computed. Lysosomes were on 
average 2.62 times larger than average centroid distances obtained 
with CLEM-Reg, indicating unambiguous labeling (Fig. 5c). Average 
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Fig. 1 | Volume CLEM data generation and CLEM-Reg algorithm. a, Obtaining a 
vCLEM dataset consists of acquiring a FM and vEM image of the same sample. The 
two image stacks are traditionally manually aligned by identifying landmarks in 
both modalities and computing a transform to warp the FM stack onto the vEM 
data. b, CLEM-Reg fully automates the registration step for vCLEM datasets by 

first segmenting mitochondria in both image modalities, sampling point clouds 
from these segmentations and registering them. Once registered, the point cloud 
alignment is used to warp the FM stack onto the vEM data. All data visualizations 
were generated with napari. c, The napari-clemreg plugin automatically registers 
vCLEM datasets with a single button click. Panel a created with Biorender.com.
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centroid distances obtained with CLEM-Reg were within 100.98 nm of 
centroid distances obtained from manual registration and thus below 
the theoretical resolution of the FM which, for the imaging system used, 
was 120 nm in xy and 350 nm in z (Fig. 5d). 3D visualization overlays of 

segmentations and centroids of each lysosome are shown in Fig. 5e. 
Further quantifications demonstrating equivalent performance on 
conventional resolution confocal microscopy data (Supplementary 
Fig. 2a,b) are shown in Extended Data Fig. 5a–d.

a    FM segmentation with edge detection and dynamic thresholding

b    Deep learning-based EM segmentation with MitoNet
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Fig. 2 | Mitochondria segmentation in FM and EM. a, Mitochondria in the 
MitoTracker channel are segmented by applying a 3D LoG filter to extract edges 
and dynamically thresholded to account for decreasing pixel intensity values as 
the imaging depth increases. To remove spurious mitochondria segmentations, 
a size-based filter is used. b, Mitochondria in the vEM data are segmented with 

a pretrained MitoNet25 model. The MitoNet architecture is composed of four 
encoding layers, two atrous spatial pyramid pooling layers followed by semantic 
and instance segmentation outputs, which are post-processed to yield a final 
panoptic segmentation mask shown on the right-hand side. Visualizations were 
generated with napari.
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To assess the generalizability of CLEM-Reg to other EM modali-
ties, performance was additionally assessed on a dataset acquired in 
SBF-SEM. CLEM-Reg overlays were obtained by registering mitochon-
dria on a portable machine (Methods) requiring 2.44 min including 
mitochondria segmentation and image warping, while manual registra-
tion with BigWarp took around 2 h (Fig. 5f). A total of four lysosomes 
distributed across the cell were manually segmented for performance 
quantification (Supplementary Fig. 1c–f).

CLEM-Reg overlaid LysoTracker signal to all four lysosomes in the 
SBF-SEM volume regardless of size (Fig. 5g). Lysosomes were on aver-
age 6.95 times larger than centroid distances obtained with CLEM-Reg, 
indicating unambiguous correlation between fluorescent signal and 
lysosomes (Fig. 5h). On average, centroid distances in the overlay 
obtained with CLEM-Reg were within 54.88 nm of centroid distances 
obtained from manual registration. Notably, CLEM-Reg achieved 
smaller centroid distances compared to the manual registration on 
two lysosomes (Fig. 5i). 3D visualization overlays of segmentations and 

centroids of each lysosome are shown in Fig. 5j. In addition, equivalent 
alignment performance of CLEM-Reg on conventional resolution 
confocal microscopy data (Supplementary Fig. 2e,f) was verified in 
Extended Data Fig. 5e–h.

To evaluate whether alignment performance depended on proxim-
ity of target structures to segmented mitochondria, centroid distances 
between fluorescent signal and target structures were correlated with 
distances of target structures (Extended Data Fig. 6 shows quantifica-
tion of endosome overlay on EMPIAR-11537) to mitochondria using 
Spearman’s correlation (Extended Data Fig. 7). Only a slight correla-
tion of ρ = 0.5 in one dataset (EMPIAR-10819) and no correlation in 
two datasets (EMPIAR-11537 and EMPIAR-11666) could be observed, 
indicating that proximity to mitochondria did not lead to improved 
registration accuracy.

Next, performance of CLEM-Reg against manual registration 
was quantified on manually placed landmarks in the LM and EM vol-
umes using BigWarp (EMPIAR-10819, number of point pairs n = 145; 

a    Point cloud generation and downsampling

b    Point cloud registration

Mitochondria segmentation Generated point cloud Downsampled point cloud

Iteration 0 Iteration 5 After convergence

EM
FM

EM points 
FM points 

Fig. 3 | Point cloud generation and registration. a, Point clouds are sampled 
on the surface of the 3D mitochondria segmentations in both FM and EM. To 
reduce the computational load and speed up the alignment time (Extended 

Data Figs. 2 and 3), both point clouds are downsampled. b, The point clouds are 
registered using rigid CPD28 until convergence (50 iterations). Visualizations 
were generated with napari.
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Fig. 4 | Comparing overlays obtained manually and with CLEM-Reg. CLEM-Reg  
overlays were obtained with rigid registration using the napari-clemreg plugin, 
while the manual overlays were obtained with affine registration using the 
BigWarp plugin in Fiji. a, vCLEM overlays for EMPIAR-10819 dataset showing 
mitochondria (MitoTracker), lysosomes (LysoTracker), Golgi apparatus (TGN46) 
and nucleus (Hoechst) with EM data acquired on FIB-SEM microscope. b, vCLEM 

overlays for EMPIAR-11537 dataset showing MitoTracker, WGA, GFP-TGN46 
and Hoechst with EM data acquired on FIB-SEM microscope. c, vCLEM overlays 
for EMPIAR-11666 dataset showing MitoTracker, LysoTracker, GFP-TGN46 and 
Hoechst staining with EM data acquired on SBF-SEM microscope. Overlays were 
generated with napari.

http://www.nature.com/naturemethods


Nature Methods | Volume 22 | September 2025 | 1923–1934 1930

Article https://doi.org/10.1038/s41592-025-02794-0

f SBF-SEM (EMPIAR-11666)  

xy-view yz-view

M
an

ua
l (

Bi
gW

ar
p)

C
LE

M
-R

eg

LysoTracker EM lysosome

100 nm

CLEM-Reg overlay

g h i

j

e

a
FIB-SEM (EMPIAR-10819) 

b c d

Lysosome size
CLEM-Reg
Manual

Lysosome size
CLEM-Reg
Manual

5 µm 

5 µm 

1 µm 

100 nm

M
an

ua
l (

Bi
gW

ar
p)

C
LE

M
-R

eg

LysoTracker

xy-view yz-viewCLEM-Reg overlay

EM lysosome 

Ly
so

 1

Ly
so

 2
Ly

so
 3
Ly

so
 4
Ly

so
 5

0

0.2

0.4

0.6

CLE
M-Reg

Man
ual

0

100

200

300

400

500

600

700

800

C
en

tr
oi

d 
di

st
an

ce
 (n

m
)

Mean EM size
Mean FM size

∆(C
LE

M-Reg,

Man
ual)

0

50

100

150

200

250

300

350

400

∆
 C

en
tr

oi
d 

di
st

an
ce

 (n
m

)

xy resolution

z resolution

Ly
so

 1

Ly
so

 2
Ly

so
 3

Ly
so

 4
0

0.1

0.2

0.3

EM
 o

ve
rla

id
 b

y 
FM

 (µ
m

3 ) 
EM

 o
ve

rla
id

 b
y 

FM
 (µ

m
3 ) 

CLE
M-Reg

Man
ual

0

100

200

300

400

500

600

700

800

C
en

tr
oi

d 
di

st
an

ce
 (n

m
)

Mean EM size

Mean FM size

∆(C
LE

M-Reg,

Man
ual)

–100

0

100

200

300

400

∆
 C

en
tr

oi
d 

di
st

an
ce

 (n
m

)

xy resolution

z resolution

x (nm)

200
600

1,000
1,400

y (
nm)

800

1,200

1,600

z (nm
)

600

1,000

1,400

1,800

Centroid distance (nm)
310.15
124.00

Lysosome 1

x (nm)

–100
100

300
500

700
900

y (
nm)200

600

1,000

z (nm
)

–100

100

300

500

Centroid distance (nm)
28.45
54.59

Lysosome 2

x (nm)

400
800

1,200
1,600

y (
nm)

800

1,200

1,600

z (nm
)

800

1,200

1,600

2,000

Centroid distance (nm)
253.47
139.50

Lysosome 3

x (nm)

200
600

1,000
1,400

1,800

y (
nm)

200

600

1,000

1,400

z (nm
)

800

1,200

1,600

2,000

2,400

Centroid distance (nm)
357.83
412.31

Lysosome 4

x (nm)

300
500

700
900

1,100

y (
nm)500

700

900

z (nm
)

200

600

1,000

1,400

Centroid distance (nm)
340.83
187.33

Lysosome 1

x (nm)

200
600

1,000
1,400 y (

nm)600

1,000

1,400

z (nm
)

200

600

1,000

1,400

1,800

Centroid distance (nm)
366.69
198.42

Lysosome 2

x (nm)

200
600

1,000
1,400

1,800
y (

nm)

600
1,000

1,400
1,800

z (nm
)

–200

200

600

1,000

1,400

Centroid distance (nm)
228.47
117.28

Lysosome 3

x (nm)

200
600

1,000
1,400

1,800

y (
nm)

600

1,000

1,400

z (nm
)

–200

200

600

1,000

1,400

Centroid distance (nm)
142.06
146.36

Lysosome 4

x (nm)

200
600

1,000
1,400

1,800
2,200

y (
nm)

600

1,000

1,400

z (nm
)

0

500

1,000

1,500

2,000

Centroid distance (nm)
247.27
171.01

Lysosome 5

Lysosome segmentation (EM) CLEM-Reg (FM) Manual (FM)

Lysosome segmentation (EM) CLEM-Reg (FM) Manual (FM)

Fig. 5 | Comparing alignment results between CLEM-Reg and experts.  
a,f, LysoTracker channels were overlaid to FIB-SEM (EMPIAR-10819) and  
SBF-SEM (EMPIAR-11666) data using mitochondria as off-target landmarks with 
CLEM-Reg. To quantify registration performance, five lysosomes were manually 
segmented throughout each EM volume. Corresponding segmentations in FM 
were obtained by segmenting the LysoTracker channel with Otsu’s method39.  
b,g, Volume of lysosomes in EM overlaid by FM signal was computed by 
intersecting EM and FM segmentations. c,h, Centroid distances between EM 
segmentations and segmented LysoTracker signal in FM were computed with 
Euclidean distance. Mean size of FM (n = 5 lysosomes in c and n = 4 lysosomes 

in h) and EM (n = 5 lysosomes in c and n = 4 lysosomes in h) segmentations 
are shown in magenta and gray, respectively. d,i, The difference between 
LysoTracker signal overlaid manually and with CLEM-Reg was computed from 
previously found centroid distances. Mean difference in centroid distances 
(n = 5 lysosomes in d and n = 4 lysosomes in i) is shown with a red horizontal 
line. The theoretical xy and z resolution of the fluorescence microscope used is 
shown in magenta. e,j, 3D visualizations of lysosome overlays were generated by 
obtaining meshes from segmentations of EM shown in gray, LysoTracker signal 
registered using BigWarp (Manual) shown in blue and CLEM-Reg shown in red. 
Visualizations were generated with napari and matplotlib.
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EMPIAR-11537, n = 42; and EMPIAR-11666, n = 55). Landmarks placed 
in the LM volume were transformed with rigid and affine warping 
matrices obtained from CLEM-Reg and BigWarp, respectively. Then, 
Euclidean distances between transformed landmarks placed in the LM 
volume and corresponding landmarks placed in the EM volume were 
computed (Extended Data Fig. 8a–c and Extended Data Fig. 9 for quali-
tative error maps between landmarks placed in EM and LM landmarks 
transformed with CLEM-Reg). Distances between EM landmarks and 
LM landmarks transformed by warping matrices found with CLEM-Reg 
and BigWarp were not significantly different (Student’s t-test) in one 
out of three datasets (EMPIAR-10819, P > 0.05; EMPIAR-11537, P < 0.01; 
and EMPIAR-11666, P < 0.0001). Note, however, that warping matrices 
obtained from BigWarp were computed to explicitly minimize dis-
tances between manually placed landmarks in LM and EM. Thus, Euclid-
ean distances computed between EM landmarks and LM landmarks 
transformed by warping matrices obtained from BigWarp correspond 
to the residual registration error which arises due to landmarks being 
placed by an expert relying on visual inspection only. To explore the 
robustness of manual landmark placement, landmarks placed in the 
LM and EM volumes were randomly offset by up to 10 pixels (Gaussian 
random noise with μ = 0 and σ = npixels) and distances between LM land-
marks transformed by CLEM-Reg and BigWarp computed as described 
above (Extended Data Fig. 8d). Notably, randomly offsetting landmarks 
by up to 3 (EMPIAR-11537) and 5 (EMPIAR-11666) pixels was sufficient 
to obtain nonsignificant (P > 0.05 with Student’s t-test) differences 
in alignment between CLEM-Reg and manual registration (Extended 
Data Fig. 8e,f).

Overall, these results indicate that CLEM-Reg successfully auto-
mates vCLEM registration of both FIB-SEM and SBF-SEM data, cor-
relating submicron structures with near expert-level accuracy while 
considerably reducing registration time. Moreover, fluorescent overlay 
of target structures does not correlate with distance to segmented 
off-target structures (mitochondria) and registration with CLEM-Reg is 
equivalent to BigWarp assuming manual landmarks are placed with an 
error not exceeding five pixels. Crucially, registration with CLEM-Reg 
was performed using an off-target channel (MitoTracker) and assessed 
on an unseen target channel (LysoTracker) reducing potential biases 
arising from directly aligning target structures.

CLEM-Reg plugin for napari
Napari is an open-source multidimensional image viewer for Python. 
It allows third-parties to develop plugins with additional custom func-
tionality37. The plugin allows users to automatically register vCLEM 
datasets with a single click of a button. It also includes the option to 
execute and display intermediate steps of the full pipeline enabling 
users to fine-tune their results. Various parameter configurations for 
a given step can thus be explored without needing to re-run the entire 
pipeline (Supplementary Fig. 3).

A range of features are included in the plugin, such as the option 
to delineate a corresponding ROI using the ‘Shapes’ layer in napari or 
the option to choose between rigid (CPD) and nonlinear registration 
(BCPD). Parameters such as the FM segmentation settings, point cloud 
sampling density and the maximum number of iterations for the point 
cloud registration can be tuned. Parameters can be saved and reused to 
ensure reproducibility. Overlays can be directly exported from napari, 
as well as the initial and transformed point clouds, for quality control 
purposes. Intermediate outputs such as segmentation masks and 
sampled point clouds can be directly visualized in the napari viewer 
to aid troubleshooting. It is also possible to inject intermediate results 
from external sources, for example, an FM segmentation method 
from a different plugin, or a pre-existing EM segmentation mask. The 
resulting ‘Labels’ layer can then be set as an input to subsequent steps 
in CLEM-Reg. The results, usability and user-friendliness of the plugin 
were assessed on three vCLEM datasets (EMPIAR-10819, EMPIAR-11537 
and EMPIAR-11666).

Identifying TGN46-positive transport carriers with CLEM-Reg
To validate CLEM-Reg, a rare dynamic cellular process involving sub-
micron organelles and transport carriers was studied. Despite being 
primarily localized to the TGN, a small subset of TGN46 (1–5%) rap-
idly cycles between the TGN and plasma membrane. The TGN46 exits 
the TGN in ‘CARriers of the TGN to the cell Surface’ (CARTS), which 
play a role in transport of plasma membrane proteins (for example, 
desmoglein-I, a key component of desmosomes) and secretion (for 
example lysozyme C, pancreatic adenocarcinoma upregulated factor) 
and recycles back to the TGN via endosomes33–36. Leveraging the com-
plementary information derived from vCLEM, unambiguous identifica-
tion of the subset of endosomes and transport carriers engaged in the 
process of trafficking TGN46 between TGN and plasma membrane was 
demonstrated on two datasets (EMPIAR-10819 and EMPIAR-11537) with 
CLEM-Reg (Fig. 6a,b). Labeling accuracy of endosomes with GFP-TGN46 
signal was quantitatively assessed on EMPIAR-11537 (Extended Data 
Fig. 6) with further quantifications demonstrating equivalent perfor-
mance on conventional resolution confocal microscopy data (Sup-
plementary Fig. 2c,d) shown in Extended Data Fig. 10.

By utilizing off-target landmarks (in this case, mitochondria) 
to derive the warping matrix, precise and accurate overlays of fluo-
rescence to small target organelles were achieved, while minimizing 
subjective errors that result from aligning fluorescence directly to 
presumed target structures. Here, the overlays facilitated the iden-
tification of different morphological populations of TGN46-positive 
CARTS in different cellular locations; small vesicular structures tended 
to localize in the periphery, whereas complex membrane and vesicular 
structures were closer to the perinuclear region (Supplementary Figs. 4 
and 5). Such functional labeling of organelles with submicron precision 
has the potential to provide vital mechanistic information for a range 
of biological processes.

Discussion
This study introduces CLEM-Reg, an automated and unbiased 
end-to-end vCLEM registration framework, implemented as a dedi-
cated plugin for napari. The proposed registration approach relies 
on extracting landmarks using classical image processing and deep 
learning. After segmenting internal landmarks in FM and EM, point 
clouds are sampled and preprocessed to obtain a memory-efficient, 
modality-agnostic representation. Point cloud registration finds a map-
ping between the two image volumes, with which the FM acquisition is 
warped onto the EM volume to obtain a final vCLEM overlay. CLEM-Reg 
drastically reduces registration time to a few minutes and achieves 
near expert-level performance on three benchmark vCLEM datasets.

CLEM-Reg’s potential in driving new biological insights is also 
demonstrated. Correlation of small punctate structures, like the trans-
port carriers and endosomes studied herein, is challenging due to 
the lack of characteristic morphologies. Thus, accurate correlation 
requires precise and unbiased landmark-based alignment of off-target 
structures, which CLEM-Reg automatically delivers across the whole 
cell volume. Wakana et al. studied TGN46 carriers in two dimensions 
using permeabilized cells36. CLEM-Reg, however, enables identifica-
tion of TGN46 carriers in 3D across whole cells with intact membranes. 
Future work could build on these results by studying morphological 
differences of transport carriers in their native state between healthy 
and pathological cells. Since all registered datasets have been publicly 
deposited, others interested in TGN46 trafficking can mine these data 
to more completely study instances of TGN46-positive CARTS. Overall, 
these results highlight a broader concept for underpinning structure–
function studies with vCLEM.

Nevertheless, certain limitations remain with regard to the auto-
mated organelle segmentation in EM, which adversely impacts the 
alignment performance when more than 40% of mitochondria are 
missed during the segmentation step (Extended Data Fig. 1a). Registra-
tion performance with CLEM-Reg is also more sensitive to the loss of 
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peripheral landmarks (Extended Data Fig. 1b) which is consistent with 
previous work by Paul-Gilloteaux et al.15. While MitoNet was shown to 
perform well on the three vCLEM datasets shown in this study, this 
cannot be guaranteed for all vEM datasets. For instance, to segment 
mitochondria in SBF-SEM, preprocessing with contrast-limited adap-
tive histogram equalization was required (Methods). This is likely 
due to the imbalanced dataset used to train MitoNet with 75.6% of 
data acquired on FIB-SEM and only 5.2% on SBF-SEM microscopes25. 

One approach to address this is to make use of transfer learning, a 
deep-learning method in which already trained models are briefly 
retrained on a smaller dataset to improve performance. While train-
ing deep neural networks previously required access to GPUs and 
fluency in programming languages such as Python, open-source pro-
jects such as ZeroCostDL4Mic40, DeepImageJ41, Imjoy42 or DL4MicE-
verywhere43 are rapidly removing these barriers, enabling GUI-driven 
interaction with a range of deep-learning architectures. Open-source 

a TGN46 overlay on FIB-SEM data (EMPIAR-10819)

500 nm

z

b TGN46 overlay on FIB-SEM data (EMPIAR-11537)

1 µm 

1 µm 

500 nm

5 µm 

5 µm 

500 nm

500 nm

500 nm

z

Fig. 6 | Identification of GFP-TGN46-positive endosomes and transport 
carriers. a,b, In addition to the expected TGN localization of GFP-TGN46, GFP-
TGN46-positive endosomes and transport carriers were identified in EM guided 
by overlays obtained with CLEM-Reg. Structures of interest are circled in green 

and corresponding montages showing entire endosomes or transport carriers 
are displayed. Images in montages are shown with a spacing of 40 nm (orange) or 
50 nm (magenta and red) in z. Full montages with 10 nm spacing in z can be found 
in Supplementary Figs. 4 and 5.
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and community-driven model libraries such as the Bioimage Model 
Zoo44, which allow easy sharing of pretrained deep-learning models, 
are another important resource.

CLEM-Reg includes the option to perform nonlinear alignment of 
volumes using BCPD and 3D thin-plate-spline warping; however, rigid 
registration applied to a FIB-SEM benchmark dataset outperforms 
nonlinear registration (Extended Data Fig. 4) and runs orders of magni-
tude faster (2.17 min versus 205 min to obtain overlays for all channels, 
including mitochondria segmentation; Methods). While nonrigid reg-
istration is often thought to deliver superior alignment performance, 
both the results obtained here and previous work14,15 do not support this 
assumption. A possible explanation for this counterintuitive finding 
is that better performance can be achieved by restricting the degrees 
of freedom, as the point cloud data from the two modalities are inher-
ently noisy and do not perfectly match. Thus, as noise increases due 
to factors such as segmentation errors, non-isotropic pixel sizes in the 
FM volume or point sampling, the nonlinear registration approach is 
more prone to converging to nonoptimal solutions due to the larger 
parameter space. Rigid registration restricts the degrees of freedom 
and thus the parameter space, which facilitates convergence toward 
an optimal solution.

The size of bioimage datasets can also cause challenges for auto-
mated alignment. While the time required to register point clouds 
follows a power law (Extended Data Fig. 3), segmenting and warping 
image volumes scales cubically. Thus, downsampling of the EM dataset 
is generally required before execution. Chunked data handling with 
next-generation file formats (NGFFs)45 in combination with tools such 
as Dask46 could allow users to run the CLEM-Reg on full-resolution data 
without encountering memory issues. Different use-cases will likely 
require different resolutions for processing47 (Extended Data Fig. 2). 
For instance, segmentation of larger organelles such as mitochondria 
and nuclei can, in principle, be accurately performed on substantially 
downscaled data, whereas smaller organelles require retention of 
higher-resolution information. An appealing feature of NGFFs is that 
they store data in an image pyramid of multiple resolutions, allowing 
the selection of appropriate resolutions to accurately and efficiently 
perform each task without requiring multiple copies. Additionally, 
CLEM-Reg relies heavily on Scipy48 and scikit-image49 for tasks such as 
FM segmentation and point sampling of the FM and EM segmentation; 
however, these packages do not natively provide GPU acceleration. As 
such, future work to incorporate GPU acceleration into the CLEM-Reg 
workflow using Python libraries such as Cupy50 or clEsperanto51 could 
reduce processing time. This optimization could considerably acceler-
ate multiple steps within the CLEM-Reg workflow.

While CLEM-Reg’s ability to register vEM techniques that image 
the block face is demonstrated, other vEM methods such as array 
tomography52 and serial section transmission electron microscopy 
(ssTEM)53 could be used given a sufficiently accurate section-to-section 
alignment; however, robust alignment of consecutive EM sections is 
challenging, due to the nonlinear deformations associated with manual 
sectioning and imaging, in particular by transmission electron micros-
copy (TEM). Currently, each section is finely aligned to the previous 
section using manually placed landmarks on adjacent sections. This 
process can introduce bias and is extremely lengthy, requiring days of 
an expert’s time, and is, therefore, beyond the scope of this paper. We 
speculate that methods based on registering segmented landmarks, 
such as CLEM-Reg, could form part of an iterative pipeline to improve 
this section-to-section alignment by providing additional information 
about the quality of alignment.

While CLEM-Reg has been demonstrated to register single-cell 
scale data with mitochondria segmentations, the core of the alignment 
workflow is agnostic to the segmented landmarks. As such, the method 
could be used at different scales or across different modalities as long as 
certain conditions are met. These are the existence of a segmentation 
algorithm for the same structure in both modalities, and that those 

structures are numerous and distributed throughout the volume to be 
aligned. For example, nucleus segmentation algorithms in EM and FM 
could be used to derive point clouds to register tissue-scale volumes 
for vCLEM, or nucleus segmentations in X-ray microscopy could be 
used to align to EM or FM (or both). With the rapid development of 
artificial intelligence-based segmentation methods54, the range of 
suitable target structures will likely continue to grow. These develop-
ments hold the promise of broadening the applicability of CLEM-Reg 
to other multimodal registration tasks beyond vCLEM.

Online content
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Methods
Cell model
HeLa cells were obtained from the Cell Services Science Technology 
Platform at The Francis Crick Institute and originated from the Ameri-
can Type Culture Collection (ATCC; CCL-2).

CLEM data acquisition
HeLa cells were maintained in Dulbecco’s modified Eagle medium 
(Gibco) supplemented with 10% fetal bovine serum at 37 °C and 5% 
CO2. A total of 150,000 cells were seeded in 35-mm photo-etched 
glass-bottom dishes (MaTtek Corp). At 24 h, cells were transfected 
with 0.1 µg of GFP-TGN46 construct per dish, using Lipofectamine 
LTX and PLUS reagent (Invitrogen) in Opti-MEM medium (Gibco) as 
recommended by the manufacturer. Then, 300 µl of transfection mix 
were added to 2 ml antibiotic-free medium and incubated overnight. 
At 36 h, cells were stained with LysoTracker red (100 nM) or Wheat 
Germ Agglutinin (WGA) Alexa Fluor 594 (5 µg ml−1) and MitoTracker 
deep red FM (200 nM) for 10 min in HBSS (WGA) or 30 min in DMEM 
(LysoTracker and MitoTracker). Hoechst 33342 (1 µg µl−1) was added in 
the last 5 min of the tracker incubation. All probes were from Molecular 
Probes (Thermo Fisher Scientific). Cells were then washed three times 
with 0.1 M phosphate buffer, pH 7.4 and fixed with 4% (v/v) formalde-
hyde (Taab Laboratory Equipment) in 0.1 M phosphate buffer, pH 7.4 for 
15 min. Cells were washed twice and imaged in 0.1 M phosphate buffer 
on an AxioObserver 7 LSM900 with Airyscan 2 microscope with Zen 
v.3.1 software (Carl Zeiss). Cells were first mapped with a ×10 objective 
(NA 0.3) using brightfield microscopy to determine their position on 
the grid and tile scans were generated. The cells of interest were then 
imaged at high resolution in Airyscan mode with a ×63 oil objective (NA 
1.4). Smart setup was used to set up the imaging conditions. A sequen-
tial scan of each channel was used to limit crosstalk and z-stacks were 
acquired throughout the whole volume of the cells.

The samples were then processed using a Pelco BioWave Pro+ 
microwave (Ted Pella) following a protocol adapted from the National 
Centre for Microscopy and Imaging Research protocol (https://
emcubed.org/wp-content/uploads/2017/11/ellismans_sbfsem_ 
sampleprep_protocol.pdf). Each step was performed in the Biowave, 
except for the phosphate buffer and water wash steps, which consisted 
of two washes on the bench followed by two washes in the Biowave 
without vacuum (at 250 W for 40 s). All the chemical incubations were 
performed in the Biowave for 14 min under vacuum in 2-min cycles 
alternating with/without 100 W power. The SteadyTemp plate was set 
to 21 °C unless otherwise stated. In brief, the samples were fixed again 
in 2.5% (v/v) glutaraldehyde (TAAB)/4% (v/v) formaldehyde in 0.1 M 
phosphate buffer. The cells were then stained with 2% (v/v) osmium 
tetroxide (TAAB) / 1.5% (v/v) potassium ferricyanide (Sigma), incu-
bated in 1% (w/v) thiocarbohydrazide (Sigma) with SteadyTemp plate 
set to 40 °C, and further stained with 2% osmium tetroxide in ddH2O 
(w/v). The cells were then incubated in 1% aqueous uranyl acetate (Agar 
Scientific) with a SteadyTemp plate set to 40 °C, and then washed in 
dH2O with SteadyTemp set to 40 °C. Samples were then stained with 
Walton’s lead aspartate with SteadyTemp set to 50 °C and dehydrated 
in a graded ethanol series (70%, 90% and 100%, twice each), at 250 W 
for 40 s without vacuum. Exchange into Durcupan ACM resin (Sigma) 
was performed in 50% resin in ethanol, followed by four pure Durcupan 
steps, at 250 W for 3 min, with vacuum cycling (on/off at 30-s intervals), 
before polymerization at 60 °C for 48 h.

Focused ion beam scanning electron microscopy (FIB-SEM) data 
were collected using a Crossbeam 540 FIB-SEM with Atlas 5 for 3D 
tomography acquisition (Carl Zeiss). A segment of the resin-embedded 
cell monolayer containing the cell of interest was trimmed out, and the 
coverslip was removed using liquid nitrogen before mounting on a 
standard 12.7-mm SEM stub using silver paint and coating with a 10-nm 
layer of platinum. The ROI was relocated by briefly imaging through the 
platinum coating at an accelerating voltage of 10 kV and correlating to 

previously acquired FM images. On completion of preparation of the 
target ROI for Atlas-based milling and tracking, images were acquired 
at 5 nm isotropic resolution throughout the cell of interest, using a 6-µs 
dwell time. During acquisition, the SEM was operated at an accelerating 
voltage of 1.5 kV with 1.5 nA current. The EsB detector was used with a 
grid voltage of 1.2 kV. Ion beam milling was performed at an accelerat-
ing voltage of 30 kV and a current of 700 pA.

For SBF-SEM, the block was trimmed to a small trapezoid, excised 
from the resin block and attached to an SBF-SEM specimen holder 
using conductive epoxy resin. Before the commencement of an 
SBF-SEM imaging run, the sample was coated with a 2-nm layer of 
platinum to further enhance conductivity. SBF-SEM data were col-
lected using a 3View2XP (Gatan) attached to a Sigma VP SEM (Carl 
Zeiss). Inverted backscattered electron images were acquired through 
the entire extent of the ROI. For each of the 133 consecutive 50-nm 
slices needed to image the cell in its whole volume, a low-resolution 
overview image (horizontal frame width 150.58 µm; pixel size of 75 nm; 
2-µs dwell time) and a high-resolution image of the cell of interest 
(horizontal frame width 63.13 µm; pixel size of 7 nm; using a 3-µs 
dwell time) were acquired. The SEM was operated in high vacuum 
with focal charge compensation on. The 30-µm aperture was used, 
at an accelerating voltage of 2 kV.

Preprocessing for CLEM registration
Airyscan data were first processed in Zen software using the Airys-
can processing tool, which consists in pixel reassignment followed 
by Wiener filter deconvolution. The settings used were Auto-Filter 
and Standard strength. The super-resolution Airyscan data was then 
processed in Zen software using the z-stack alignment tool to correct 
z-shift. The settings used were the highest quality, translation and linear 
interpolation, with the MitoTracker channel as a reference. The .czi file 
was then opened in Fiji55 and saved as a .tif file. For EMPIAR-11666, the 
MitoTracker channel was further processed using Yen’s thresholding 
method56 to remove overexposed punctate artifacts affecting FM 
segmentation. For the unprocessed data used in Extended Data Figs. 5 
and 10, the Airyscan data were first aligned in Zen software using the 
z-stack alignment tool to correct z-shift, The .czi file was then opened 
in Fiji. On our system, the raw data size is reduced by grouping the data 
from the 32 parts of the Airyscan detector into four concentric rings, 
which appear as four time points in Fiji. Here, the first time point, which 
corresponds to the central area of the Airyscan detector, was selected 
and the file saved as a .tif format.

After initial registration with template matching by normalized 
cross-correlation in Fiji (https://sites.google.com/site/qingzongtseng/
template-matching-ij-plugin), the FIB-SEM images (EMPIAR-10819 
and EMPIAR-11537) were contrast normalized as required across the 
entire stack and converted to eight-bit grayscale. To fine-tune image 
registration, the alignment to the median smoothed template method 
was applied57. The aligned xy 5-nm FIB-SEM stack was opened in Fiji and 
resliced from top to bottom (to xz orientation) and rotated to roughly 
match the previously acquired Airyscan data. Finally, the EM volume 
was binned by a factor of 2 and 4 in x, y and z using Fiji resulting in an 
isotropic voxel size of 10 and 20 nm, respectively.

For the SBF-SEM data (EMPIAR-11666), only minor adjustments 
in image alignment were needed, carried out using TrakEM2 in Fiji58. 
Finally, the EM volume was binned by a factor of 2 and 4 in xy to obtain 
a voxel size of 14 × 14 × 50 nm and 28 × 28 × 50 nm, respectively.

Computational resources
The algorithms described here were primarily developed and tested on 
a portable machine running on a Linux distribution with the following 
specifications: 64 GB RAM, Intel Core i7-11850H 2.50 GHz × 16 CPU and 
GeForce RTX 3080 GPU. An additional workstation with the following 
specifications was also used for testing: 256 GB RAM, Dual Intel Xeon 
(14 CPU each) 2.6 GHz, Quadro M600 16 GB GPU.
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FM segmentation with thresholded Laplacian of Gaussian
To ensure the FM pixel values were in the range of 0 and 1, min–max 
normalization of the following formula was used, where x  is the FM 
volume, xmin is the lowest pixel value in the volume, xmax is the largest 
pixel value in the volume and xscaled  is the resulting scaled volume 
xscaled =

x−xmin

xmax−xmin
. In the subsequent step, the scaled FM volume  

undergoes a LoG filtering process, requiring one tunable parameter σ. 
This process involves convolving a one-dimensional difference of 
Gaussians (DoG) across the x, y and z planes of the volume. Marr and 
Hildreth59 demonstrated that a reasonable approximation of LoG can 
be attained by maintaining a ratio of σ2

σ1
= 1.6 when applying the DoG. A 

value of σ = 3.0 was used for EMPIAR-10819 and EMPIAR-11537, thus 
after applying the LoG ratio, σ1 = 3.0 and σ2 = 4.8. A dynamic threshold 
based on a relative user-defined threshold and the mean intensity of a 
given slice was then applied to each image in the resulting volume to 
account for inconsistencies arising due to attenuation of the signal at 
deeper imaging levels. The relative threshold was set to T = 1.2  for 
EMPIAR-10819 and EMPIAR-11537. For EMPIAR-11666, the following 
parameters were used: σ = 2.2 and T = 1.3. Last, to reduce the number 
of spurious segmentations, a size-based filter was then applied. This 
was achieved by using a 3D connected components algorithm from the 
Python package cc3d (v.3.2.1)60, which removes components below a 
user-defined size threshold with a default value set to remove all seg-
mentations with a size below the 5th and above the 95th percentile.

EM segmentation with MitoNet
The mitochondria within the EM volume were segmented using a pre-
trained MitoNet deep-learning model61. The MitoNet model using its 
default parameters was applied to EM volumes in EMPIAR-10819 and 
EMPIAR-11537 without preprocessing, resulting in instance segmenta-
tion of the mitochondria. To improve mitochondrial segmentation of 
EMPIAR-11666, the aligned stack was processed for contrast-limited 
adaptive histogram equalization62 using the enhance local contrast 
(CLAHE) plugin in Fiji, using the following parameters: block size = 127; 
histogram bins = 256; maximum slope = 2, 3 and 10; mask = “*None*“; 
fast. Each CLAHE stack (from three maximum slope values) was seg-
mented using MitoNet and the masks were merged by summation 
before point cloud sampling.

Point cloud sampling of the EM and FM segmentation
The method employed for producing point clouds from the FM and 
EM volumes uses the same standardized procedure. First, the FM and 
EM segmentation masks were resampled to obtain isotropic voxels 
(EMPIAR-10819 and EMPIAR-11537, 20 nm; EMPIAR-11666, 50 nm). Then, 
a Canny edge filter63 with a default value of σ = 1.0 was applied to each 
binary segmentation slice. This process ensures that only points on the 
edge of the outer mitochondrial membrane are randomly sampled. 
Then, every pixel along the membrane was identified as a potential 
point to be used within the point cloud, but due to the computationally 
expensive nature of point cloud registration algorithms, subsequent 
downsampling was carried out.

Point cloud downsampling and registration with CPD  
and BCPD
After sampling, the point clouds were downsampled, binned and fil-
tered by removing statistical outliers to reduce memory requirements 
and noise. Downsampling of the point clouds was performed by a 
uniform downsampling function which takes the point cloud and 
user-defined sampling frequency 1/k  as the input and samples every 
kth point in the point cloud, starting with the 0th point, then the kth point, 
then the k + kth point and so on. A value of k = 30 was used for all data-
sets. Following the initial downsampling, a binning step was used which 
employs a regular voxel grid to create a downsampled point cloud from 
the input point cloud. There are two primary steps of the binning start-
ing with an initial partitioning of the point cloud into a set of voxels. 

Subsequently, each occupied voxel generates exactly one point 
through the computation of the average of all the points enclosed 
within it, resulting in a binned version of the original point cloud.  
A voxel size of s = 15 × 15 × 15 pixels was used for all datasets. For reg-
istration, the Python package probreg (v.0.3.6)64 was used, as it imple-
ments both the CPD28 and BCPD27 algorithm with a unified API. For all 
datasets, rigid CPD with 50 iterations was used to obtain globally reg-
istered point clouds of the FM to the EM. The found transformation 
matrix is then used for the warping of the image volumes. Note that 
the transformation matrix is computed in pixels, but conversion to 
physical units can be achieved by an appropriate scaling factor of the 
translation vector.

Warping of image volumes
The transformation matrix found from the global point cloud registra-
tion was applied to the source image volume using the affine transform 
implementation provided by SciPy (v.1.10.1)48, a powerful open-source 
Python library that provides a range of functions for mathematics, 
science and engineering. This implementation makes use of inverse 
projection to interpolate the intensity values of the warped image thus 
requiring an inverted transformation matrix, which is found with 
NumPy’s (v.1.24.2)65 linear algebra module. Interpolation of the warped 
image was achieved with higher-order spline interpolation. Nonlinear 
image warping was achieved with thin-plate spline deformation which 
finds a mapping between a set of control points f ∶ (x, y, z) → (x′, y′, z′) 
such that the deformed source points match the target points as closely 
as possible while ensuring that the image between these control points 
remains smooth. As there are no open-source implementations for 
volumetric thin-plate spline warping available for Python, a custom 
script was implemented based on ref. 38. To reduce computational 
overhead, the FM volume was nonlinearly warped as eight individual 
chunks. After warping, FM volumes were resampled to map to  
the EM space.

Benchmarking of CLEM-Reg against experts
For expert manual registration, image stacks from FM and EM were 
manually aligned to each other using the BigWarp plugin of the Fiji 
framework, with the EM stack set as ‘target’ and the FM stack as ‘mov-
ing’ dataset. Corresponding points were placed on mitochondria on 
both datasets and throughout the whole volume of the cell. An affine 
transformation was applied to the FM data and the transformed dataset 
was merged with the EM data to produce the final overlay.

Due to the inherent differences in appearance between the two 
imaging modalities, direct intensity-based quantification of the reg-
istration performance is not possible. Therefore, two metrics were 
introduced to assess registration performance: fluorescent signal 
overlap to EM structures and centroid distance between fluorescent 
signal and target structures.

First, target structures (lysosomes in EMPIAR-10819 and EMPIAR- 
11666 and endosomes in EMPIAR-11537) were manually segmented in 
3D in the EM volume in TrakEM2 in Fiji. These lysosomes or endosomes 
were then cropped with a bounding box encompassing the fluorescent 
signal from the corresponding manual- or CLEM-Reg-warped FM vol-
umes and then segmented using the Otsu thresholding method39 to 
generate the correlating FM segmentation.

Segmentations were transformed from the pixel space to real 
space by applying appropriate scaling. The intersected volume between 
fluorescent and EM segmentations was then computed. Centroid 
distances were obtained by first constructing meshes from segmenta-
tions using marching cubes. Then, centroids were determined on 
meshes derived from fluorescent and EM segmentations and their 
Euclidean distance calculated. The size of segmented target structures 
(lysosomes or endosomes) was estimated by computing characteristic 
length scales L from the volume of the segmented target structures V  
with L = 3√V .
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Plugin development and deployment
The plugin was developed for Python (v.3.9) and was built with napari 
(v.0.4.17)37. It integrates the CLEM-Reg workflow in the form of a single 
widget running end-to-end and as a set of individual widgets, each 
carrying out an individual step (split registration functionality). The 
EMPIAR-10819 dataset can directly be loaded as sample data from 
the plugin. To distribute the plugin and make it accessible from the 
napari interface, the project is packaged using the cookiecutter plugin 
template provided by napari. The plugin is available for installation 
via the package installer for Python (pip) in the command line under 
the project name ‘napari-clemreg’. The plugin can also be installed via 
the built-in plugin menu which lists all plugins currently available on 
napari-hub. The source code is available as a GitHub repository along-
side a detailed project description, installation instructions and user 
guide. Additionally, a Jupyter notebook is provided to demonstrate 
headless execution of the workflow without the napari GUI.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in this study have been deposited at EMPIAR and 
Biostudies. EMPIAR-10819, EM (https://www.ebi.ac.uk/empiar/
EMPIAR-10819/) and FM (https://www.ebi.ac.uk/biostudies/bioim-
ages/studies/S-BSST707). EMPIAR-11537, EM (https://www.ebi.ac.uk/
empiar/EMPIAR-11537/) and FM (https://www.ebi.ac.uk/biostudies/
bioimages/studies/S-BSST1075); and EMPIAR-11666, EM (https://www.
ebi.ac.uk/empiar/EMPIAR-11666/) and FM (https://www.ebi.ac.uk/
biostudies/bioimages/studies/S-BSST1175).

Code availability
Code for CLEM-Reg (under MIT license) is available on GitHub (https://
github.com/krentzd/napari-clemreg).

References
55.	 Schindelin, J. et al. Fiji: an open-source platform for 

biological-image analysis. Nat. Methods 9, 676–682  
(2012).

56.	 Yen, J.-C., Chang, F.-J. & Chang, S. A new criterion for automatic 
multilevel thresholding. IEEE Transactions on Image Processing 4, 
370–378 (1995).

57.	 Hennies, J. et al. AMST: alignment to median smoothed template 
for focused ion beam scanning electron microscopy image 
stacks. Sci. Rep. 10, 2004 (2020).

58.	 Cardona, A. et al. TrakEM2 software for neural circuit 
reconstruction. PLoS ONE 7, e38011 (2012).

59.	 Marr, D. & Hildreth, E. Theory of edge detection. Proc. R. Soc. 
Lond. B Biol. Sci. 207, 187–217 (1980).

60.	 Silversmith, W. Cc3d: connected components on multilabel 3D 
& 2D images. Zenodo https://doi.org/10.5281/zenodo.5719536 
(2021).

61.	 Conrad, R. & Narayan, K. Empanada MitoNet model files. Zenodo 
https://doi.org/10.5281/zenodo.6861565 (2022).

62.	 Pizer, S. M., Johnston, R. E., Ericksen, J. P., Yankaskas, B. C. & 
Muller, K. E. Contrast-limited adaptive histogram equalization: 
speed and effectiveness. In Proc. First Conference on Visualization 
in Biomedical Computing 337–345 (IEEE, 1990).

63.	 Canny, J. A computational approach to edge detection.  
IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698  
(1986).

64.	 Tanaka, K. et al. Probreg. Python package version v.0.3.6  
https://github.com/neka-nat/probreg (2019).

65.	 Harris, C. R. et al. Array programming with NumPy. Nature 585, 
357–362 (2020).

Acknowledgements
This work was supported by The Francis Crick Institute which receives 
its core funding from Cancer Research UK (CC1076, CC1295), the 
UK Medical Research Council (CC1076, CC1295) and the Wellcome 
Trust (CC1076, CC1295). D.K. was funded by The Francis Crick 
Institute, the Pasteur-Paris University International doctoral program, 
the INCEPTION program (Investissement d’Avenir grant ANR-
16-CONV-0005) and a Fondation pour la Recherche Médicale Fin de 
Thèse grant (FDT202404018132). R.F.L. was supported by a Medical 
Research Council Skills development fellowship (MR/T027924/1). 
R.H. is supported by the Gulbenkian Foundation (Fundação Calouste 
Gulbenkian) and received funding from the European Research 
Council under the European Union’s Horizon 2020 research and 
innovation program (grant agreement no. 101001332), the European 
Union through the Horizon Europe program (AI4LIFE project with grant 
agreement 101057970-AI4LIFE and RT-SuperES project with grant 
agreement 101099654-RT-SuperES to R.H.), the European Molecular 
Biology Organization Installation Grant (EMBO-2020-IG4734), the 
Chan Zuckerberg Initiative Visual Proteomics Grant (vpi-0000000044; 
https://doi.org/10.37921/743590vtudfp) and a Chan Zuckerberg 
Initiative Essential Open-Source Software for Science (EOSS6-
0000000260). Views and opinions expressed are those of the 
authors only and do not necessarily reflect those of the European 
Union. Neither the European Union nor the granting authority can be 
held responsible for them. M. Russell (Electron Microscopy Science 
Technology Platform, The Francis Crick Institute and Centre for 
Ultrastructural Imaging, King’s College London) collected preliminary 
CLEM data used in testing. M.E. was funded by the Cancer Research UK 
Convergence Science Centre PhD Programme (CANCTA-2024/10007).

Author contributions
D.K., R.F.L., R.H., L.M.C. and M.L.J. developed the initial idea for this 
project. D.K. conceived CLEM-Reg and directed this project. D.K., 
M.E., M.C.D., M.L.J. and L.M.C. wrote the manuscript. D.K. and M.E. 
developed the source code. C.S. created a Docker file. R.F.L. collected 
preliminary CLEM data. M.C.D. and C.J.P. collected the benchmark 
CLEM datasets (M.C.D., FM and SBF-SEM; C.J.P., FIB-SEM). M.C.D. 
performed manual registrations, segmentations and user testing. D.K., 
M.E., M.C.D., R.F.L., R.H., L.M.C. and M.L.J. contributed to the revisions 
of the manuscript.

Funding
Open Access funding provided by The Francis Crick Institute.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41592-025-02794-0.

Supplementary information The online version contains supplementary 
material available at https://doi.org/10.1038/s41592-025-02794-0.

Correspondence and requests for materials should be addressed to 
Daniel Krentzel or Martin L. Jones.

Peer review information Nature Methods thanks John Bogovic, 
Xavier Heiligenstein, and the other, anonymous, reviewer(s) for their 
contribution to the peer review of this work. Primary Handling Editor: 
Rita Strack, in collaboration with the Nature Methods team. Peer 
reviewer reports are available.

Reprints and permissions information is available at  
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://www.ebi.ac.uk/empiar/EMPIAR-10819/
https://www.ebi.ac.uk/empiar/EMPIAR-10819/
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST707
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST707
https://www.ebi.ac.uk/empiar/EMPIAR-11537/
https://www.ebi.ac.uk/empiar/EMPIAR-11537/
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST1075
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST1075
https://www.ebi.ac.uk/empiar/EMPIAR-11666/
https://www.ebi.ac.uk/empiar/EMPIAR-11666/
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST1175
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BSST1175
https://github.com/krentzd/napari-clemreg
https://github.com/krentzd/napari-clemreg
https://doi.org/10.5281/zenodo.5719536
https://doi.org/10.5281/zenodo.6861565
https://github.com/neka-nat/probreg
https://github.com/neka-nat/probreg
https://doi.org/10.37921/743590vtudfp
https://doi.org/10.1038/s41592-025-02794-0
https://doi.org/10.1038/s41592-025-02794-0
http://www.nature.com/reprints


Nature Methods

Article https://doi.org/10.1038/s41592-025-02794-0

Extended Data Fig. 1 | Benchmarking registration robustness to missing 
mitochondria. The normalized root mean squared error (NRMSE) was computed 
between manually and automatically obtained overlays with CLEM-Reg as a 
function of the percent of missing mitochondria in the EM segmentation mask. 
A fixed voxel size of 10 and sampling frequency of 1/128 was kept for the point 
cloud generation. (a) Mitochondria were randomly removed by identifying 

mitochondrial instances with connected components and then removing 
mitochondria with the probability indicated on the x-axis. (b) Mitochondria were 
removed with a probability indicated on the x-axis in three areas with increasing 
distance from the center of the image volume (‘central’ in blue, ‘intermediate’ in 
orange and ‘peripheral’ in green).
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Extended Data Fig. 2 | Benchmarking registration performance for varying 
point cloud sampling parameters. The normalized root mean squared error 
(NRMSE) was computed between manually and automatically obtained overlays 
with CLEM-Reg for a decreasing number of sampled points and increasing voxel 

sizes (pixels) across all three benchmark datasets. (a) NRMSE computed on 
target channels (EMPIAR-10819 and EMPIAR-11666: Lysotracker; EMPIAR-11537: 
GFP-TGN46) and registration time. (b) NRMSE computed on off-target landmark 
channel (Mitotracker).
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Extended Data Fig. 3 | Estimating scaling law for rigid CPD registration. 
Empirical data for the number of sampled points and registration time are shown 
as blue dots and fitted curves in orange are shown on a log-log plot.  

The parameters governing the power law y = bxm that relates the number of 
sampled points to the registration time were estimated with values for the 
exponent m ranging between 1.47 and 1.69.
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Extended Data Fig. 4 | Comparing rigid and non-rigid registration results on 
EMPIAR-10819. (a) vCLEM overlays showing registration overlays for CLEM-
Reg (both rigid and non-rigid) and BigWarp (manual). (b) Volume of lysosomes 
overlaid by fluorescent signal shows that rigid mostly outperforms non-rigid 
alignment. (c) Euclidean distance between centroids segmented in EM and 

segmented Lysotracker signal shows that in three out of five cases,  
rigid alignment outperforms non-rigid alignment. (d) 3D visualizations of 
Lysotracker signal overlaid with rigid (orange), non-rigid (blue) and manual 
alignment (green).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comparing alignment results between overlays 
obtained with CLEM-Reg using raw (unprocessed confocal-like) and processed 
(super-resolved) Airyscan FM data against overlays obtained by an expert.  
(a, e) Overlays for EMPIAR-10819 (A: FIB-SEM with Mitotracker, Lysotracker,  
GFP-TGN46 and Hoechst overlaid) and EMPIAR-11666 (I: SBF-SEM with 
Mitotracker, Lysotracker, GFP-TGN46 and Hoechst overlaid). (b,f) Volume of 
lysosomes in EM overlaid by FM signal was computed by intersecting EM with FM 
segmentations from raw (blue) and Airyscan (orange) FM overlays obtained with 
CLEM-Reg and Airyscan FM data overlaid by an expert (green). (c,g) Centroid 
distances between EM segmentations and segmented Lysotracker signal in FM 

were computed with Euclidean distance. Airyscan is shown in orange, raw FM 
data in blue and Airyscan overlaid by an expert with BigWarp in green. Mean size 
of FM for raw data (indicated by R) and Airyscan data (indicated by AS) and EM 
segmentations are shown in magenta for FM and gray for EM (n = 5 lysosomes 
in c and n = 4 lysosomes in g). (d,h) 3D visualizations of lysosome overlays 
were generated by obtaining meshes from segmentations of EM shown in gray, 
Lysotracker signal registered using BigWarp (Manual) shown in green, CLEM-Reg 
on raw data shown in blue and on Airyscan data shown in orange. Corresponding 
centroid distances are shown next to each lysosome visualization.
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Extended Data Fig. 6 | Comparing alignment results between CLEM-Reg and 
experts. (a) The GFP-TGN46 channel was overlaid to FIB-SEM (EMPIAR-11537) 
data using mitochondria as off-target landmarks with CLEM-Reg. To quantify 
registration performance, four endosomes were manually segmented 
throughout the EM volume. Corresponding segmentations in FM were obtained 
by segmenting the GFP-TGN46 channel with Otsu’s method. (b) Volume of 
endosomes in EM overlaid by FM signal was computed by intersecting EM and 
FM segmentations. (c) Centroid distances between EM segmentations and 
segmented GFP-TGN46 signal in FM were computed with Euclidean distance. 
Mean size of FM and EM segmentations are shown in magenta and gray 

respectively (n = 4 endosomes). (d) The difference between GFP-TGN46 signal 
overlaid manually and with CLEM-Reg was computed from previously found 
centroid distances. Mean difference in centroid distances is shown with a red 
horizontal line (n = 4 endosomes). The theoretical XY and Z resolution of the 
fluorescence microscope used is shown in magenta. (e) 3D visualizations of 
endosome overlays were generated by obtaining meshes from segmentations of 
EM shown in gray, Lysotracker signal registered using BigWarp (Manual) shown 
in blue and CLEM-Reg shown in red. Visualizations generated with napari and 
matplotlib.
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Extended Data Fig. 7 | Correlating lysosomes and endosomes to the distance 
to mitochondria. We obtained distances of lysosomes or endosomes to 
mitochondria by computing a distance transform on the 3D mitochondria 
segmentation masks. Distances of lysosomes or endosomes were then 
obtained by considering the previously obtained distance transform at the 
centroid of manual lysosome/endosome segmentations. Alignment accuracy 

was then assessed via centroid distances as shown in Figs. 5c and 5h, as well as 
Supplementary Fig. 4C. Spearman’s correlation was then applied with values 
shown on the top right hand side corner for each dataset (n = 5 lysosomes for 
EMPIAR-10819, n = 4 endosomes for EMPIAR-11537 and n = 4 lysosomes for 
EMPIAR-11666).
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Extended Data Fig. 8 | Comparing CLEM-Reg against manual alignment with 
BigWarp on landmarks placed in BigWarp. (a,b,c) Violin plots showing 
Euclidean distances computed between landmarks placed in EM and landmarks 
placed in LM transformed by CLEM-Reg (red) and BigWarp (blue). The difference 
in distance between landmarks transformed by CLEM-Reg and BigWarp are 
shown in orange. Mean distances are shown as horizontal bars. Statistical 
significance was computed with Student’s t-test (EMPIAR-10819: P = 0.16, 
EMPIAR-11537: P = 0.0025 and EMPIAR-11666: P = 4.52 ⋅ 10−19) with n.s 
indicating P > 0.05, ** indicating P < 0.01 and **** indicating P < 0.0001.  
(d) Sensitivity analysis of point placement precision: Landmarks were randomly 

perturbed by addition of Gaussian noise with μ = 0 and σ corresponding to 
random landmark placement errors in pixels. Euclidean distances between 
randomly perturbed landmarks placed in EM and LM transformed by CLEM-Reg 
and BigWarp were then computed as shown in a,b and c (measurements for each 
pixel perturbation were repeated n = 1,000 times). Lines correspond to mean 
P-values and shaded areas to standard deviations. (e,f) Representative crops of 
corresponding landmarks placed in EM (e) and LM (F: Mitotracker channel 
shown) with circles of radius r = 3 (red dotted lines) and r = 5 (red dashed lines) 
shown.
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Extended Data Fig. 9 | Error maps between landmarks placed in EM and LM 
landmarks transformed with CLEM-Reg. (a) Landmarks manually placed in LM 
were transformed with the transformation matrix computed by CLEM-Reg (red) 
and BigWarp (blue). To convert discrete points to a continuous map, a thin-plate 
spline (TPS) deformation model was computed using landmarks placed in EM 
(orange) and LM landmarks transformed with the CLEM-Reg matrix (red) as 

control points. To obtain error maps, the mean squared displacement based 
on the TPS model was computed across the whole image volume and average 
projections are shown for EMPIAR-10819 (b) EMPIAR-11537 (c) and EMPIAR-11666 
(d) with points corresponding to landmarks placed in EM (orange) and in LM 
transformed with CLEM-Reg (red) and BigWarp (blue). Maximum projections of 
cell outlines are shown in white.
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Extended Data Fig. 10 | Comparing alignment results between overlays 
obtained with CLEM-Reg using raw (unprocessed, confocal-like) and 
processed (super-resolved) Airyscan FM data against overlays obtained by 
an expert. (a) Overlays for EMPIAR-11537 (FIB-SEM with Mitotracker, WGA, 
GFP-TGN46 and Hoechst overlaid) (b) Volume of endosomes in EM overlaid 
by FM signal was computed by intersecting EM with FM segmentations from 
raw (blue) and Airyscan (orange) FM overlays obtained with CLEM-Reg and 
Airyscan FM data overlaid by an expert (green). (c) Centroid distances between 
EM segmentations and segmented GFP-TGN46 signal in FM were computed 

with Euclidean distance. Airyscan is shown in orange, raw FM data in blue and 
Airyscan overlaid by an expert in green. Mean size of FM for raw data (indicated 
by R) and Airyscan data (indicated by AS) and EM segmentations are shown in 
magenta for FM and gray for EM (n = 4 endosomes). (d) 3D visualizations of 
endosome overlays were generated by obtaining meshes from segmentations of 
EM shown in gray, GFP-TGN46 signal registered using BigWarp (Manual) shown 
in green, CLEM-Reg on raw data shown in blue and on Airyscan data shown in 
orange. Corresponding centroid distances are shown next to each endosome 
visualization.
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