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Structural Repetition Detector for multi-
scale quantitative mapping of molecular
complexes through microscopy

Afonso Mendes1,2,3, Bruno M. Saraiva 1,2,3, Guillaume Jacquemet 4,5,6,7,
João I. Mamede 8, Christophe Leterrier 9 & Ricardo Henriques 1,3,10

From molecules to organelles, cells exhibit recurring structural motifs across
multiple scales. Understanding these structures provides insights into their
functional roles. While super-resolution microscopy can visualise such pat-
terns,manual detection in large datasets is challenging and biased.We present
the Structural Repetition Detector (SReD), an unsupervised computational
framework that identifies repetitive biological structures by exploiting local
texture repetition. SReD formulates structure detection as a similarity-
matching problem between local image regions. It detects recurring patterns
without prior knowledge or constraints on the imaging modality. We
demonstrate SReD’s capabilities on various fluorescence microscopy images.
Quantitative analyses of different datasets highlight SReD’s utility: estimating
the periodicity of spectrin rings in neurons, detecting Human Immunodefi-
ciency Virus type-1 viral assembly, and evaluating microtubule dynamics
modulated by End-binding protein 3. Our open-source plugin for ImageJ or FIJI
enables unbiased analysis of repetitive structures across imagingmodalities in
diverse biological contexts.

Biological systems exhibit structural repetition across multiple
scales, from biomolecules to supramolecular assemblies and cel-
lular structures1. Understanding these patterns is crucial for iden-
tifying their functional significance and underlying biological
processes2. Microscopy techniques offer molecular-level resolu-
tion but manually detecting repetitive motifs in large datasets is
impractical, biased, and expertise-dependent3. To address these
limitations, machine learning, particularly deep convolutional
neural networks (CNNs), has been employed to detect and segment
biological structures automatically4. However, CNNs require
extensive labelled training data, inheriting biases5. Previous

methods enable unbiased registration but need point data, limiting
their applicability6,7. We present the Structural Repetition Detector
(SReD), an unsupervised framework to identify repetitive biologi-
cal structures by exploring local texture redundancy. SReD for-
mulates structure detection as similarity matching between local
image regions, allowing pattern detection without prior knowledge
or microscopy modality constraints. We demonstrate SReD’s cap-
abilities on fluorescence microscopy images of diverse cell types
and structures, including microtubule networks, nuclear envelope,
pores, and virus particles (Fig. 1). SReD generates Structural
Repetition Scores (SRSs) highlighting regions with repetitive
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textures. Users can provide artificial blocks or extract them from
the data for repetition analysis. An unbiased sampling scheme
maps global repetition by testing every possible image block as a
reference (Supplementary Note 1). We showcase SReD’s utility
through three datasets: 1) spectrin rings in neuronal axons, accu-
rately estimating ring periodicity and pinpointing periodic pat-
terns, 2) Human Immunodeficiency Virus (HIV) Gag assembly,
mapping viral structures without structural priors, and 3) dynamic

End-Binding Protein 3 (EB3) and microtubule structures, assessing
structural displacement and stability over time. Our open-source
ImageJ/FIJI8,9 plugin enables versatile, unbiased analysis of redun-
dancy in microscopy images. SReD advances computational
microscopy by providing a generalised framework for detecting
repetitive structures without labelled training data or single-
molecule localisation input, facilitating the quantitative study of
structural motifs across scales in diverse imaging datasets.

(a) 1-to-All: Simulated
repetition

(c) All-to-All: Single Scale

(d) All-to-All: Multiscale

(b) 1-to-All: Empirical repetition
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Fig. 1 | Applications of the Structural Repetition Detector (SReD) algorithm in
fluorescence microscopy. a Detection of Structural Repetition Using Simulated
Blocks: Microtubules imaged with STORM analysed for repetitive patterns using
simulated structural blocks. The analysis was performed using SReD’s ‘block
repetition’ mode, which features a ‘1-to-all’ matching scheme where a reference
block is compared with all the remaining image blocks. A rotation-variant corre-
lation metric (Pearson’s correlation coefficient) was used to account for structure
orientation. Coloured regions in the repetition map correspond to repetitions of
same-coloured blocks above. Scale bar: 2 µm. b Detection of Structural Repetition
Using Empirical Blocks: HeLa cell nuclei stained with DAPI used to detect repetitive
structural patterns using manually extracted empirical reference blocks. The ana-
lysis was performed in a similarmanner as shown in (a) but the reference blocks are
extracted directly from the input data. Coloured regions in the repetition map
correspond to repetitions of same-coloured blocks in the previous subpanel. Scale
bar: 30 µm. cGlobal Repetition Detection: Jurkat cell expressing inducible HIV Gag-

EGFP fusion protein analysed using global repetition detection and a rotation-
invariant metric (‘absolute difference of standard deviations’). The analysis was
performed using SReD’s ‘global repetition’ mode, which features an ‘all-to-all’
matching scheme where all image blocks are compared with all the remaining
image blocks. The repetition map reveals structures not easily detectable in input
image and their relative frequency. Scale bar: 5 µm. dMultiscale Global Repetition:
Xenopus laevis nuclear pores imaged with STORM analysed using different-sized
receptive fields to detect structural repetition at various scales. The analysis was
performed using SReD’s ‘global repetition’ mode, where each iteration used a dif-
ferent block-to-image size ratio. The repetition map identifies repeated structures
from single nucleoporins (orange) to nucleoporin clusters (blue) and nuclear pore
units (magenta). A rotation-invariant correlation metric was used to analyse
structures irrespective of their orientation. Scale bar: 120nm. Centre panel: Sim-
plified SReD algorithmworkflow, illustrating key steps from input preprocessing to
repetition map generation.
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Results
Implementation, theoretical foundation and core functionality
SReD is an open-source ImageJ and Fiji8,9 plugin that leverages
graphics-processing unit (GPU) acceleration to identify repetitive pat-
terns inmicroscopy images. The algorithm’sworkflow, outlined in Fig. 1
(centre panel), begins with the application of the Generalised
AnscombeTransform (GAT) to stabilise noise variance (Supplementary
Note 1)10 This step addresses the noise in microscopy images, which
often exhibit Poisson and Gaussian noise. The GAT nonlinearly remaps
pixel values to produce an image with near-Gaussian noise and stabi-
lised variance, preserving local contrast and overall image statistics.
This stabilisation is essential for robust downstream processing, miti-
gating violations of normality, homoscedasticity, and outlier assump-
tions that can compromise correlation metrics. Following noise
stabilisation, SReD generates a relevance mask to exclude regions
lacking substantive structural information, based on local texture
prominence quantified by variance (Supplementary Note 1; Supple-
mentary Fig. 1). The rationale is that structural elements present
themselves as regional image textures with non-zero variance. There-
fore, areas devoid of structure will exhibit minimal texture. Due to the
ubiquitous presence of noise, we calculate a threshold at which image
texture is minimal by estimating the average noise variance11. The final
relevance threshold is defined by multiplying the estimated average
noise variance by an adjustable constant, with the default set at 0. This
produces a binary mask outlining areas with sufficient structural con-
tent. The analysis proceeds using reference blocks, either simulated or
sampled from the image (i.e., empirical). These blocks are matched
against the input using correlationmetrics to generate repetitionmaps
(Supplementary Note 1). Our algorithm leverages a custom sampling
scheme in which a reference block is compared with all possible test
blocks in the image. The scheme can be ‘1-to-all’ or ‘all-to-all’,
depending on the application. The first requires a user-provided
reference block,while the latter provides unbiased structuredetection.
The comparisons between blocks consist of calculating correlation
metrics. The correlationmetrics can be rotation-variant (e.g., Pearson’s
correlation coefficient) or -invariant (e.g., absolute difference of stan-
dard deviations (ADSD))(Supplementary Note 1). In both cases, the
blocks’ dimensions are predefined by the user tomatch a specific scale.
A repetitionmap is calculated for each ‘1-to-all’ comparison,where each
pixel is assigned a score (named Structural Repetition Score, or SRS),
which reflects the similarity between the local neighbourhood centred
at that position and the reference block. Finally, the repetition map is
normalised to its range. The SRS is given by Eq. 1.

SRS Xi, Y j

� �
=Corr Xi, Y j

� �
� Rel Y j

� �
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where Xi = x1, x2, . . . , xn
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(
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the binary ‘relevance’ label of the test block is calculated as in Eq. 2,
where Var is the average noise variance of the input image. To analyse
local textures and calculate a single value for each, the reference and
test blocks require a defined centre. Therefore, the blocks’ dimensions
need to be odd, and as a result, i = [(rh,H −rh] and j = [rw, W −rw], where
rw and rh are the blocks’ width and height radii, and W and H are the
input image’s width and height. In the block repetitionmode, the input
image is probed for repetitions of a single reference block using the ‘1-
to-all’ sampling scheme. This generates a repetitionmap reflecting the
likelihood of the reference pattern occurring at that each location. In

the global repetition mode, SReD enables unbiased structure analysis
by using the entire universe of image blocks as a reference (‘all-to-all’
sampling scheme). Each reference block generates a repetition map
that is averaged, and the average value is plotted at the coordinates
corresponding to the centre of the reference block. The average uses
an exponential weight function based on the distance between the
standard deviations of the blocks in each comparison, which enhances
structural details. Therefore, the global repetition scores represent the
relative repetition of a local texture across the image. Mathematically,
the global SRS is calculated as in Eq. 3.
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where N is the size of the input image (excluding borders with length
equal to the XY radii of the blocks). The exponential weight function is
defined in Eq. 4.
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Here, in Eq. 4.,σXi andσYj are the standarddeviationsof the referenceand
test blocks. The resulting repetition maps highlight regions likely to
contain structural repetitions. Non-linear mapping can be applied to
enhance the contrast betweendifferent SRSswithin the repetitionmaps,
facilitating visual interpretation and subsequent analysis. In our
experience, we have found that applying a power transformation to
the SRSs often yields the most effective enhancement. This transforma-
tion involves raising each SRS value to a specific exponent. The choice of
exponent plays a crucial role in determining the degree of contrast
enhancement. In this study, we explored a range of exponents between
10 and 10,000. Typically, we initiate the analysis with an exponent of 10
and iteratively adjust it based on the visual assessment of the resulting
repetition map. For datasets with subtle structural repetitions or low
signal-to-noise ratios, higher exponentsmay be necessary to amplify the
differences between SRSs and reveal hidden patterns. Conversely, for
datasets with prominent structural repetitions, lower exponents may
suffice to achieve adequate contrast enhancement without introducing
excessive noise amplification. The optimal exponent ultimately depends
on the specific characteristics of the data and the desired level of visual
clarity. By carefully selecting the exponent, users can tailor the contrast
enhancement to their needs, facilitating the identification and inter-
pretation of repetitive patterns in diverse microscopy images.

General applications of SReD
To demonstrate SReD’s versatility across diverse biological contexts,
we conducted a comprehensive analysis of various microscopy data-
sets (Fig. 1; Supplementary Note 2). We first examined a Stochastic
Optical Reconstruction Microscopy (STORM) image reconstruction of
a cell with labelled microtubules12 using the Pearson’s correlation
coefficient as a rotation-variant correlation metric. This approach
effectivelymappedmicrotubules at various orientations and crossings
(Fig. 1a; Supplementary Fig. 2). We further illustrate SReD’s versatility
by detecting nuclear envelopes in DAPI-stained cells13 following the
same approachbut using empirical reference blocks extracted directly
from the input image. Here, SReD distinguished different morpholo-
gical states potentially related to cell division or stress (Fig. 1b; Sup-
plementary Fig. 3; Supplementary Note 2). SReD also enables
characterisation of structures without user-provided references. We
exemplify this functionality by analysing an image of a Jurkat cell
expressing an HIV Gag-EGFP construct, which induces the production
of virus-like particles (VLPs) (Fig. 1c; Supplementary Fig. 4). In this
mode, SReDmapped every structure in the image and assigned scores
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based on their relative repetition. A rotation-invariant correlation
metric (ADSD) was used to analyse structures irrespective of their
orientation. As expected, the top scorewas given to themost repeated
element, the diffuse EGFP signal, with viral structures exhibiting lower
frequencies. Localisation of round viral structures via local extrema
calculation revealed that the repetition map provided a superior
platform for extrema detection compared to direct analysis of the raw
images (Supplementary Fig. 4). The algorithm’s multiscale analysis
capability is achieved by adjusting the ratio of block-to-image dimen-
sions. Larger ratios capture larger structures, while smaller ratios
capture finer details. For computational efficiency, it is preferable to
modulate scale by downscaling the input rather than enlarging blocks,
although combining both approaches often preserves structural detail
best. We demonstrate this multiscale analysis by examining nuclear
pore complexes in STORM image reconstructions with labelled gp210
proteins14 also using the ADSD metric. SReD successfully mapped
structures across different scales, discerning single nucleoporins,
nucleoporin clusters, and entire nuclear pores (Fig. 1d; Supplementary
Fig. 5). SReD’s utilisation of image reconstructions and intensity-based
analysis ensures broad applicability across all types of microscopy
data. We demonstrate this versatility by detecting and classifying HIV
viral particles in transmission electron microscopy (TEM) data,
achieving a 90% concordance compared to a CNN-based approach15

(Supplementary Note 3; Supplementary Fig. 6; Supplementary
Movie 1). Furthermore, SReD enabled the detection and quantitative
description of HIV assembly platforms using STORMdata, allowing for
an assessment of how actin-debranching drug CK666 influences the
stability of these platforms (Supplementary Note 4; Supplementary
Fig. 7). A comparative analysis of SReD’s capabilities against other
methodologies in the same domain is presented in Supplementary
Table 1.

1-to-all case example: detection of spectrin ring periodicity
in axons
We used SReD’s block repetition mode to map and quantify the
membrane-associated periodic scaffold (MPS) architecture in neuro-
nal axons automatically and without bias (Fig. 2). The MPS, composed
of actin, spectrin, and associated proteins, forms a crucial structural
component of neuronal axons16,17 Super-resolution microscopy has
shown that theMPS consists of ring-like structures spaced 180–190 nm
apart, with alternating actin/adducin and spectrin rings orthogonal to
the axon’s long axis18 Mapping this nanoscale organisation across
entire neuron samples has been challenging due to the need for
manual region selection, potentially introducing bias. We analysed
datasets from Vassilopoulos et al.19. comparing neurons treated with
DMSO (control) or swinholide A (SWIN, an actin-disrupting drug).
Using SReD with the rotation-sensitive Pearson’s correlation coeffi-
cientmetric, we developed an automated workflow to determine axon
orientations by probing skeletonised neuron images with simulated
lines at varying angles (Supplementary Note 5; Supplementary Fig. 8).
This enabled consistent alignment of axon segments for downstream
analysis. We optimised parameters for simulated ring blocks to match
observed ring patterns in control data, yielding an inter-ring spacing of
192 nm, consistent with previous studies (Supplementary Fig. 9)18,19

SReD-generated repetition maps highlighting regions of high local
similarity across neuron samples, allowing automatic extraction and
quantification of MPS organisation without manual region selection
(Fig. 2b; Supplementary Fig. 10). We measured an average spacing of
178 nm under control conditions using autocorrelation functions of
the automatically extracted periodic regions (Fig. 2c; Supplementary
Fig. 11d). In agreement with Vassilopoulos et al.19. repetition maps
showed that swinholide A treatment disrupted MPS structure, with
reduced pattern prominence and frequency compared to controls
(Fig. 2b, c).We used correlationmetrics thatminimise information loss
while being aware of potential imprinting. Nonlinear mapping (e.g.,

power functions) of the output data effectively distinguishes real
patterns from imprinted ones (Supplementary Figs. 2d, e, 11c). Our
method accounts for neuron thickness variability and provides the
average distance between patterns for additional biological insights.
SReD’s local repetition scores quantified the fraction of structureswith
MPS patterns, revealing a 39% reduction in axons with detectable
periodic scaffolds after swinholide A treatment (P < 0.001, Fig. 2d).
SReD’s maps identified drug-affected regions with confidence values,
offering a detailed platform for analysing structural dysregulation
(Fig. 2c). SReD also showed higher statistical sensitivity, detecting a
12% reduction in pattern prominence post-treatment (P < 0.05) pre-
viously unreported (Supplementary Fig. 11e). To test SReD’s noise
robustness, we conducted a sensitivity analysis with images at varying
signal-to-noise ratios (SNRs) (Supplementary Fig. 12). SReD con-
sistently detected ring structures even at low SNRs near 1, where pat-
terns were visually indiscernible. SReD-generated maps outperformed
direct STORM reconstructions in autocorrelation analysis, reliably
identifying an average inter-ring spacing of 192 nm across all SNRs,
demonstrating the algorithm’s robustness in detecting structural
periodicity despite significant noise. We assessed SReD’s specificity
and robustness to pattern deformations by applying stretch defor-
mations to test images (Supplementary Fig. 13). As the stretch factor
increased, the average SRS decreased, indicating pattern disruption.
However, SReD remained specific to the original pattern within the
expected interval. Even at higher stretch factors, non-specific patterns
were quantitatively discernible and reflected the intrinsic properties of
the test data. This robustness is valuable for analysing periodic struc-
tures in diverse biological contexts, where deviations from ideal pat-
terns are commondue to sample preparation artefacts, imaging noise,
or biological variability.

All-to-all 3D case example: detecting HIV Gag assembly in 3D
The establishment of a viral infection is the product of complex host-
pathogen interactions, comprising an evolutionary ‘tug-of-war’
where cells evolve protective mechanisms whilst viruses evolve to
circumvent them. Viruses typically hijack cellular transcription and
translation machinery to produce viral progeny required for viral
replication20 Therefore, viral assembly represents a critical platform
for host-pathogen interactions that significantly impact infection
outcomes. The HIV gag gene encodes the Gag polypeptide pre-
cursor, which is cleaved into several key structural components. This
polypeptide aggregates at the membrane of infected cells and
induces the budding of membranous viral particles20 Expression of
Gag alone is sufficient to induce the formation of non-infectious
virus-like particles (VLPs)21,22 To map viral structures in an unbiased
manner, we examined an image of a Jurkat cell expressing an indu-
cible HIV Gag-EGFP construct using SReD with the rotation-invariant
ADSD metric (Fig. 3a, b). The 3D data comprised 2D images acquired
with a 0.5 µm offset in the Z-axis, which enabled using SReD’s 3D
mode. To evaluate the algorithm’s accuracy, we generated a popu-
lation of simulated diffraction-limited particles with randomly dis-
tributed intensities across the image’s dynamic range, which served
as a reference with a known ground-truth. The ImageJ/Fiji8,9 ‘3D
Maxima Finder’ plugin, which computes local maxima in 3D space,
was used to calculate 3D local maxima corresponding to active viral
assembly sites from both the input image and the repetition map
(Fig. 3c). Remarkably, SReD enabled the detection of 96% of the
simulated particles, compared to only 32% in the input image,
demonstrating the algorithm’s superior accuracy over direct analysis
of input images (Fig. 3d). Visual inspection of the detected EGFP
intensity signal vs. the SRS for the same pixel location revealed that
high-SRS regions corresponded to input regions with a wide range of
intensity values. We observed that most structures of interest were
allocated to the sample fraction above an arbitrary threshold of SRS
0.8, whilst the fraction below this threshold contained mostly
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background signal and some reference particles (Fig. 3e). Given that
autofluorescence often corrupts microscopy analyses, we evaluated
the algorithm’s performance in the presence of synthetic non-
specific structures (Supplementary Note 6). The repetition maps
produced by SReD consistently provided a superior platform for
detecting simulated reference particles and viral structures across
conditions (Supplementary Fig. 14). This analysis demonstrates
SReD’s robust capability to map biological structures, such as
assembling viral particles. The algorithm’s high sensitivity and spe-
cificity, even in the presence of non-specific structures, highlight its
potential for studying dynamic cellular processes like viral assembly,

where the ability to accurately detect and characterise structures
amidst variable backgrounds is showcased.

All-to-all live-cell case example: Assessment of the microtubule
network’s stability along time
Themultidimensional capabilities of SReD can be extended to analyse
structural dynamics over time, providing insights into structural sta-
bility. We demonstrate this application using time-lapse imaging of
RPE1 cells stably expressing EB3 fused toGFP (Fig. 4a). EB3 binds to the
plus ends of microtubules, appearing as comet-like structures that
travel along the cytoplasm when visualised under fluorescence
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reduced periodic structures. Scale bar: 1 µm. d Quantification of axon segments
with ring patterns. Box plots show a significant reduction in pattern-containing
segments in SWIN vs. CTRL (n = 6 per group, mean ± SEM; CTRL: 0.694 ± 0.008,
SWIN: 0.421 ± 0.007; p <0.001, two-sided unpaired t-test). Box plot elements are
represented as such: center line as themedian (50thpercentile); box limits asupper
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microscopy23 We used SReDwith the rotation-insensitive ADSDmetric
to generate a global repetition map by treating time as the third
dimension in our analysis, using a time-lapse sequence of ~2min
(Fig. 4b). To quantify structural changes, we calculated the Normalised
RootMean Squared Error (NRMSE) between the first and last frames of
the time-lapse for both the input images and the repetition maps. The
NRMSE of the input images reflected the spatial displacement of
dynamic structures, yielding a relatively low value. In contrast, the
NRMSE calculated from the repetition maps was higher, indicating
greater sensitivity to structural changes over time (Fig. 4c). SReD
effectively mapped the spatial distribution of EB3 comet activity over
time. By quantifying the repetitiveness of structures, it assigned scores
to different regions, highlighting areas with high EB3 comet presence
and their trajectories. The NRMSE maps further emphasised this dis-
tinction, revealing elevated values along comet paths, indicative of
their dynamic nature. In contrast, the Microtubule Organizing Center

(MTOC) demonstrated notably lower NRMSE, suggesting its greater
stability compared to the more mobile EB3 comets (Fig. 4d). The time
interval used in the analysis captures the slower dynamics of EB3
comets in this context. While individual comet tracking is not the
primary focus of this method, the approach effectively reveals the
spatiotemporal stability of structures, where instability often results
from displacement, visually manifesting as comet trajectories. To
further validate our approach, we performed the analysis with
increased temporal resolution. We compared SReD’s results with
conventional time projections of the input data, revealing advantages
of our method. Unlike time projections, which typically integrate local
intensities across time, SReD calculates local correlations of images
across time, providing relative repetition scores that indicate how
much the texture at each location changes relative to all other textures.
This approach offers two significant benefits: (i) it provides a more
nuanced measure of structural stability over time, and (ii) it is less
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via 3D local maxima detection from the input image and repetition map.
b Z-projections of the input image (top) and repetitionmap (bottom), highlighting
viral-like particles (‘EGFP’) and simulated reference particles (‘Reference’). The
‘Reference’ particles were designed as diffraction-limited particles with randomly
distributed intensities across the input’s dynamic range and serve as a reference
with a known ground-truth to evaluate the algorithm’s accuracy. c Local maxima

plots showing detected structures in the input image (top) and repetition map
(bottom), with increased sensitivity in the repetition map. d Accuracy plot com-
paring artificially-added reference particle detection: input image (32%) vs. repe-
tition map (96%). e Intensity profile graph of EGFP signal (green) and structural
repetition score (SRS,magenta), with a threshold at SRS 0.8 (dashed red line). Inset
shows pixels below (left) and above (right) the threshold, indicating high-SRS
structures. Scale bars: 5 µm (main images), 1 µm (inset). Source data for (c–e) are
provided as a Source Data file.
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susceptible to noise and intensity inconsistencies across time points
(Supplementary Note 7; Supplementary Fig. 15). In this type of com-
bined spatial and temporal analysis, instead of producing a time series,
SReD’s output is a single map that shows the local stability of the
timelapse over a specific time interval. This representation offers a
comprehensive view of structural dynamics that is not easily achieved
using traditional methods such as kymographs. While kymographs are

useful for tracking individual structures over time, SReD provides a
broader perspective on the overall stability and dynamics of sub-
cellular structures across the entire field of view.

Discussion
In neuronal axons, SReD enabled automated, unbiasedmapping of the
membrane-associated periodic scaffold (MPS), revealing nuanced
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changes in pattern frequency and prominence following pharmaco-
logical perturbation. While previous studies by Vassilopoulos et al.19.
reported a 40% reduction in overall MPS prominence after treatment
with swinholide A, SReD’s analysis provides a more detailed char-
acterisation of the phenotype. By first distinguishing between regions
with and without periodic patterns, and then analysing only the
pattern-present areas, SReD detected a 12% reduction in pattern pro-
minence and a 32% reduction in pattern frequency. This refined ana-
lysis not only corroborates the previously reported overall effect but
also decomposes it into two distinct components, offering deeper
insights into the nature of the structural changes. This analysis show-
cased how SReD offers a distinct approach for studying periodic
structures compared to other methods, such as that described by
Barabas et al.24. For example, while both methods rely on prior esti-
mation of axon orientations to facilitate ring pattern detection, they
differ in their implementation. Barabas et al.24. employ the Hough
transform algorithm25 to determine the orientation of axon edges,
while SReD employs skeletonization and compares skeletons against
reference blocks containing lines at different angles. In defining peri-
odic patterns, Barabas et al.24. analytically model the periodic ring
structure with an equation that characterizes its features. This equa-
tion is then used alongside Pearson correlation to identify regions
containing the pattern. In contrast, SReD defines periodicity using
image-based reference patterns, enabling comparisons based on
actual structural representations rather than mathematical abstrac-
tions. This approach potentially makes SReD more adaptable for
detecting irregular or complex motifs that are difficult to describe
analytically. Thus, while Barabas et al.24. analytical approach may be
advantageous for scenarios requiring precise mathematical descrip-
tions of periodicity, SReD’s image-based framework offers greater
flexibility for extending its application to diverse structural patterns.
These differences underscore the complementary nature of the two
methods, with each suited to specific research goals and datasets.

Our results demonstrate SReD’s versatility and analytical power
across diverse biological contexts. For HIV Gag assembly, SReD
achieved sensitive detection without relying on structural priors, sig-
nificantly outperforming direct analysis of input images. This cap-
ability is particularly valuable in studying dynamic cellular processes
like viral assembly, where the ability to accurately detect and char-
acterise structures amidst variable backgrounds is crucial. In live-cell
imaging of microtubule dynamics, SReD’s multidimensional cap-
abilities allowed for quantitative assessment of structural stability
across space and time. This analysis provided insights into the differ-
ential dynamics of EB3 comets and themicrotubule organising centre,
demonstrating SReD’s potential for studying complex, time-
dependent cellular processes.

A key advantage of SReD is its ability to detect and characterise
structures without the need for extensive labelled training data or
single-molecule localisation input. This feature is particularly useful for
exploratory analysis of complex biological systems where the under-
lying structural patterns may not be fully known a priori. The frame-
work’s flexibility in accommodating different reference blocks, from
simulated idealised structures to patches extracted from the image,
enhances its utility acrossdiverse experimental scenarios. Importantly,
this strength also introduces a dependence on pre-processing steps

and the choice of the referenceblock, which can significantly influence
the output. Careful optimization of these factors is essential to ensure
reliable and interpretable results. Another crucial feature is SReD’s
robustness to noise and pattern deformations, as demonstrated in our
sensitivity analyses. This resilience enables reliable structure detection
and quantification even in challenging imaging conditions, expanding
the range of biological questions that can be addressed through
quantitative image analysis. The algorithm’s multiscale mapping cap-
abilities provide a unique perspective on hierarchical structural orga-
nisation, as exemplified by our analysis of nuclear pore complexes at
different spatial scales. While SReD offers significant advantages, it is
important to acknowledge its limitations. The algorithm’s perfor-
mance can be influenced by the choice of reference blocks, requiring
their optimisation. Additionally, while SReD reduces the need for
manual region selection, some level of results curation may still be
necessary, particularly in complex or heterogeneous samples. Fur-
thermore, SReD utilises correlation metrics, each offering distinct
advantages and limitations. For example, metrics such as the Pearson
correlation coefficient and the Structural Similarity Index Measure
(SSIM) produce satisfactory results but exhibit sensitivity to rotational
variations. Conversely,metrics that demonstrate rotational invariance,
such as the absolute difference of standard deviations, do not posess
comparable sensitivity for detecting structural nuances. Finally, the
algorithm’s computational complexity warrants attention. Consider a
2D image with dimensions n1 × n2 pixels and a block of size k1 × k2
pixels. Each pairwise comparison between the block and an image
region requires O(k1k2) operations. The total number of such over-
lapping image regions is (n1 − k1 + 1)(n2 − k2 + 1). Consequently, the ‘1-
to-all’ scheme (block repetition) entails a computational complexity of
O((n1 − k1 + 1)(n2 − k2 + 1)k1k2).When the imagedimensions significantly
exceed the block size (n1≫ k1 andn2≫ k2), this simplifies toO(n1n2k1k2).
In the ‘all-to-all’ scheme (global repetition), the computational com-
plexity scales quadratically with the image size and linearly with the
block size, resulting in O(n2

1n2
2k1k2). SReD mitigates this computa-

tional burden by harnessing GPU acceleration and pre-calculating
background regions that do not warrant analysis.

Future developments of SReD could focus on further automat-
ing the reference block selection process, potentially incorporating
machine learning approaches to optimise block parameters based on
image characteristics. Integration with other computational tools,
such as deep learning-based segmentation algorithms, could also
enhance SReD’s capabilities for more comprehensive structural
analysis pipelines. To address the trade-off between rotational sen-
sitivity and structural detail detection, future work could enhance
the SReD pipeline by incorporating rotation-aware analysis. This
could involve systematically rotating reference blocks when
employing rotation-sensitive metrics, enabling SReD to retain the
high structural sensitivity of metrics like the Pearson’s correlation or
SSIM while mitigating their rotational limitations. Although this
approach is explored in the present study, further optimization
could refine the pipeline by automating processes such as image
transformations. This automation would not only improve efficiency
but also reduce user intervention and potential variability, broad-
ening SReD’s applicability across diverse biological contexts with
varying structural orientations.

Fig. 4 | Assessment of the microtubule network’s stability along time
using SReD. a Analysis pipeline schematic. Global repetition analysis used time as
the third dimension on a timelapse sequence of RPE1 cells expressing EB3-GFP over
105 s (35 frames) (‘absolute difference of standard deviations’ metric). The first
frame served as the control. Normalised Root Mean Squared Error (NRMSE)
quantified structural differences between time points. b Overlay of input images
(green) and temporal global repetition maps (magenta) at t =0 (left) and t = 105 s
(right). The first frame’s repetition map highlights EB3 comets, while the entire

time-lapse map shows comet trajectories and repetition over time. c Bar graph of
average NRMSE between input images and repetition maps. A higher error in the
repetition maps (0.08) vs. control images (0.03) indicates greater sensitivity to
structural changes. Source data are provided as a Source Data file. d NRMSE maps
of input images (top row) and repetition maps (bottom row), showing structural
stability over time.HighNRMSEvalues (warmer colours) in EB3 trajectories indicate
lower stability, while lower values (cooler colours) in the Microtubule Organising
Centre (MTOC) indicate higher stability. Scale bars: 10 µm.
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Methods
Optimisation of block parameters for ring pattern detection
A collection of 248 testing blocks incorporating various combinations
of inter-ring spacing and ring height was generated. This process was
automated using a custom ImageJ8 macro. To create input images, five
representative segments from the distal axons within each dataset
were randomly selected, comprised of six neurons per treatment.
These regions were then rotated to align with the horizontal axis to
guarantee consistency across subsequent calculations. Then, SReD
was used to generate repetition maps for every test block, and their
autocorrelation functions were calculated. The relative amplitude of
the autocorrelations’ first harmonic was used to assess how effectively
each block captured the underlying periodic pattern. The set of block
parameter values that maximised the first harmonics’ relative ampli-
tude was systematically identified. The optimised set of parameter
values served as a reliable representation of the periodic patternwithin
the dataset. The optimisation was performed separately for each
dataset analysed in this study.

Detection of reference and virus-like particles using Global
Repetition
An image volume containing 3D simulated reference particles was
generated using a custom Python script. The reference particles were
added to the input volume by addition. Global Repetition maps were
calculated using a block size of 5 × 5 × 5 pixels and a relevance constant
of 0. Then, the repetition maps were non-linearly mapped using a
power transformation with an exponent of 10000. 3D maxima were
calculated using the ImageJ8 ‘3D Maxima Finder’ plugin, which com-
putes local maxima in 3D space using a flooding-based approach, with
an XY and Z radius of 5 pixels and a minimum threshold of 0.1. The
comparison of coordinates between the 3Dmaxima calculated and the
reference particles was performed using a custom Python script.

Cell culture
Jurkat cells were cultured in RPMI 1640 (Gibco) supplemented with
10% fetal bovine serum (FBS), 2mM L-glutamine and 50 µg/mL genta-
mycin. HEK293T and RPE1-EB3-GFP cells were cultured in DMEM sup-
plemented with 10% fetal bovine serum (FBS), 2mM L-glutamine and
50 µg/mL gentamycin. Cell lines were cultured at 37 °C and 5% CO2.

DNA plasmids and cell lines
The RPE1-EB3-GFP cell line was kindly provided by Dr. Mónica
Bettencourt-Dias. A plasmid expressing HIV Gag with an internal EGFP
tag was generated using the NEB HiFi Assembly Kit (New England Bio-
labs). A lentiviral backbone containing a tetracycline-inducible promoter
and a gene encoding rtTA was prepared by digesting the pCW57.1
plasmid (Addgene #41393) with 5 µg/mL restriction enzymes BamHI and
NheI (New England Biolabs) according to the manufacturer’s instruc-
tions for 1 h at 37 °C. The digestion product was separated using 1%
agarose gel electrophoresis (AGE) and the 7.6˜ kb band was purified
using theGFX PCR&Gel Band Purification Kit (Sigma-Aldrich) according
to the manufacturer’s instructions. Then, three DNA fragments were
generated by polymerase chain-reaction (PCR) using Q5 High-Fidelity
DNA Polymerase (New England Biolabs). The first fragment (445bp),
encoding the HIV-1 Matrix protein followed by an HIV-1 protease clea-
vage site (MA-PCS), was generated using Optigag-mNeonGreen-IN26 as a
template and primers 5′-tcagatcgcctggagaattgggccaccatgggtgcgcga3′
(Fw)+ 5′-ccatacgcgtctggacaatggggtagttttgactgacc-3′ (Rv). The second
fragment (751 bp), encoding EGFP, was generated using HIV-(i)GFP
ΔEnv21 as a template and primers 5′-ccattgtccagacgcgtatggtgagcaag-3′
(Fw)+ 5′-tagttttgacttctagacttgtacagctcgtc-3′ (Rv). The third fragment
(1.2 kb), encoding a PCS and the HIV-1 Capsid, Nucleocapsid and p6
proteins (PCS-CA-NC-p6), was generated using Optigag-mNeonGreen-
IN26 as a template and primers 5′-caagtctagaagtcaaaactaccccattgtc-3′
(Fw)+ 5′-aaaggcgcaaccccaaccccgtcattgtgacgaggggtctgaac-3′ (Rv). The

three fragments were purified using DNA purification columns and their
molecular size was confirmed by AGE. The HiFi Assembly reaction was
performedusing 50ng of digested vector and equimolar amounts of the
three fragments and incubated at 50 °C for 1 h. The reactionproductwas
diluted 1:4 in dH20, and 2 µL of the dilution was transformed into che-
mically competent STABL4 bacteria (Thermo Fisher). The bacteria were
plated in LB-agar supplemented with 100 µg/mL ampicillin and incu-
bated overnight at 37 °C. Several colonies were picked and inoculated
into liquid LB containing ampicillin at 100 µg/mL. TheplasmidDNA from
these colonies was extracted using the GenElute Plasmid Miniprep Kit
(Sigma-Aldrich) andwas confirmed by digestion with restriction enzyme
XbaI followed by AGE (2.3 kb and 7.5 kb fragments). A positive colony
was then sequenced using Sanger sequencing (Genewiz) and primers 5′-
cgtcgccgtccagctcgacca3′, 5′-ccattgtccagacgcgtatggtgagcaag-3′ and 5′
aaaggcgcaaccccaaccccgtcattgtgacgaggggtctgaac-3′. This process yielded
the lentiviral plasmid TetOn-Optigag(i)EGFP, where a human codon-
optimised gag gene contains a PCS-flanked EGFP-encoding gene. Len-
tivirus packaging TetOn-Optigag-(i)EGFP were produced to transduce
Jurkat cells. To do this, HEK293T cells were cultured in 6-well plates until
∼80% of confluence, transfected using 300 µL/well of transfection mix-
ture (DMEM, 3 µg of TetOn-Optigag-(i)EGFP, 1.5 µg of psPAX2 (Addgene
#12260), 1.5 µg of CMV-VSV.G (NIAID) and 12 µL of linear poly-
ethyleneimine MW-25,000 (final concentration of 5 µg/µL)(Sigma-
Aldrich)) and incubatedovernight for 8 h. Then, the culturemediumwas
replacedwith completeDMEM, followedby a 24-h incubation. The virus-
rich supernatant was collected and filtered with 0.22 µm syringe filters.
Jurkat cells (2mL at 1 × 106 cells/mL) were inoculated with 300 µL of
virus-rich supernatant and Polybrene (10 µg/mL), followed by a 3-day
incubation. Antibiotic selection of transduced cells was performed by
replacing the culture medium with complete RPMI containing pur-
omycin at 2 µg/mL and incubating for 3 days, at which point an ‘empty
virus’ control sample had no live cells remaining. The cells were incu-
bated with doxycycline at 1 µg/mL for 24h to induce expression and
single cells were isolated using Fluorescence-assisted Cell Sorting
(FACS). The EGFP-positive population was divided into three subsets
according to their relative signal intensity (‘Low’, ‘Medium’ and ‘High’)
and single cells were plated into 96-well plates. The cultures were
expanded for 15 days, and the resulting cell lines were validated using
fluorescence microscopy and Western blotting. A clonal line of the
‘Medium’ subset was used for this study.

Sample preparation and acquisition of microscopy data
HILO imaging of HIV virus-like particle assembly in activated
Jurkat cells. Activation surfaces were prepared based on the protocol
in ref. 27 To do this, Lab-Tek 8-well chambers (Thermo Fisher) were
cleaned with 100% isopropanol for 10min and followed by three
washing steps with dH20. Then, 200 µL of a mouse anti-CD3 antibody
diluted in PBS at afinal concentration of 1 µg/mLwasadded to thewells
and incubated overnight at 4 °C. Thewells were carefullywashed twice
with PBS to remove unbound antibodies. Jurkat cells expressing
TetOn-Optigag-(i)EGFP were incubated with 1 µM of doxycycline
(Sigma-Aldrich) for 24 h. Then, 50,000 cells were added to each well
and allowed to adhere and stabilise for 1 h. Imaging was done in a
Nanoimager (ONI) using the 488nm laser at 10% and channel 0 (two-
band dichroic: 498–551 nm and 576–620nm). The HILO angle was
optimised manually, and images were acquired at 100ms exposure.
Pixel size: 117 nm. The anti-CD3 antibody was produced at the Flow
Cytometry & Antibodies Unit of Instituto Gulbenkian de Ciência,
Oeiras, Portugal.

3D imaging of HIV virus-like particle assembly in activated
Jurkat cells. Jurkat cells expressing TetOn-Optigag-(i)EGFP were
centrifuged at 200 × g for 5 min and resuspended in complete
RPMI containing 0.5 µM of doxycycline to induce Gag expression.
Glass coverslips (1.5 mm thick, round, 18 mm diameter) were
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washed with isopropanol for 10min followed by three washes
with dH20. The coverslips were coated with Poly-L-Lysine (PLL,
Sigma Aldrich) at 0.1% and incubated for 15 min at room tem-
perature, followed by three washing steps with dH20. The PLL-
coated coverslips were dried, mounted in an Attofluor chamber
(Thermo Fisher) and fixed on the microscope’s stage. The
microscope’s enclosure (Okolabs) was heated at 37 °C and a
manual gas mixer (Okolabs) was used to supply 5% CO2. The cells
were seeded in the pre-treated coverslips and allowed to settle in
the microscope enclosure for 30min. Imaging was performed on
an inverted microscope ECLIPSE Ti2-E (Nikon Instruments)
equipped with a Fusion BT (Hamamatsu Photonics K.K., C14440-
20UP) and a Plan Apo λ 100× (NA 1.45) Oil objective. The sample
was illuminated with LED light at 515 nm (CoolLED pe800) and
acquisition was done at 75 ms exposure with an active Nikon
Perfect Focus system and the NIS-Elements AR 5.30.05 software
(Nikon Instruments). Volumes were captured by acquiring frames
at different depths (z-step size: 0.5 µm). Image deconvolution
was performed using a custom Python script based on the
Richardson-Lucy method28,29 as described in refs. 30, 31.

Imaging EB3-GFP comets in RPE1 cells. RPE1-EB3-GFP cells (50000
per well) were seeded into Lab-Tek 8-well glass chambers (Thermo
Fisher) and allowed to adhere for 24 h. Widefield imaging was per-
formed in a Nanoimager (ONI) using the 488 nm laser at 10% and
channel 0 (two-band dichroic: 498–551 nm and 576–620nm). Images
were acquired at 75ms exposure for 2min. Pixel size: 117 nm.

Assessment of the microtubule network’s stability along time
usingSReD. Subsets of theoriginal time lapsewerecreatedby keeping
images belonging to the time frames of interest. Global repetition
mapswere generated from the temporal subsets using anXYblock size
of 7 × 7 pixels, a Z block size equal to the number of images in each
subset, and a relevance constant of 0. The repetition maps were non-
linearly mapped using a power transformation with an exponent of
1000. NRMSE maps were calculated using the ‘scikit-image’ library
(v0.22.0, accessible at https://scikit-image.org/docs/stable/api/
skimage.metrics.html).

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data obtained in this study is available at https://doi.org/10.5281/
zenodo.13764726 and https://doi.org/10.6019/S-BIAD1620 under CC
BY 4.0 license. The STORM data containing cells with labelled micro-
tubules is available at https://doi.org/10.5281/zenodo.553435112 The
widefield microscopy data containing DAPI-stained nuclei is available
at https://doi.org/10.5281/zenodo.323247813 The STORM data con-
taining nuclear pores with labelled gp210 is available at https://www.
embl.de/download/ries/excitation_intensities/Nup96-BG-AF647_
250kWcm2_57_2.zip14. Source data are provided with this paper.

Code availability
The SReD algorithm, along with all custom scripts used in this manu-
script are available at http://github.com/HenriquesLab/SReD (release
v1.0). All source code is under an MIT License.
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