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Efficiently accelerated bioimage analysis 
with NanoPyx, a Liquid Engine-powered 
Python framework
 

Bruno M. Saraiva1,2,12, Inês Cunha1,3,4,12, António D. Brito    1,5,12, Gautier Follain    6, 
Raquel Portela5, Robert Haase    7, Pedro M. Pereira    5, 
Guillaume Jacquemet    6,8,9,10 & Ricardo Henriques    1,2,5,11 

The expanding scale and complexity of microscopy image datasets require 
accelerated analytical workflows. NanoPyx meets this need through an 
adaptive framework enhanced for high-speed analysis. At the core of 
NanoPyx, the Liquid Engine dynamically generates optimized central 
processing unit and graphics processing unit code variations, learning and 
predicting the fastest based on input data and hardware. This data-driven 
optimization achieves considerably faster processing, becoming broadly 
relevant to reactive microscopy and computing fields requiring efficiency.

Super-resolution microscopy has revolutionized cell biology by ena-
bling fluorescence imaging at an unprecedented resolution1–4. However, 
data collected from these experiments often require specific analytical 
procedures, such as image registration, resolution enhancement and 
quantification of data quality and resolution. Many of these procedures 
use open-source image analysis software, particularly ImageJ5/FIJI6 or 
napari7. The computational performance of each of these tools bears 
notable implications for processing time, which becomes especially 
salient given the increasing need for high-performance computing in 
bioimaging analysis. In this work we present NanoPyx, a Python frame-
work for microscopy image analysis that exploits the Liquid Engine to 
massively accelerate analysis workflows.

With the increasing use of deep learning, many bioimaging analy-
sis pipelines are now being developed in Python. Pure Python code 
often runs on a single central processing unit (CPU) core, impact-
ing the performance and speed of Python frameworks. Alternative 
solutions, such as Cython8, PyOpenCL9 and Numba10, allow CPU and 
graphics processing unit (GPU) parallelization, which can reduce 
run times (Supplementary Note 1). However, identifying the swiftest 
implementation depends on the hardware, input data and parameters. 

Figure 1 illustrates a case where denoising the larger image with a nonlo-
cal means (NLM) algorithm11,12 is approximately two times faster when 
using a CPU unthreaded strategy than a pixel-wise threaded imple-
mentation strategy on a GPU in a professional workstation (Fig. 1c and 
Supplementary Note 2). Notably, the same algorithm cannot be run on 
the testing laptop’s GPU with the same parameters due to architecture 
limitations (Fig. 1b). This means that certain acceleration strategies 
have hardware constraints and require a different approach. How-
ever, for other conditions (condition 2 on workstation and laptop and 
condition 3 on laptop), GPU-based processing is a faster alternative 
for the same NLM algorithm. Extended Data Figs. 1–5 further support 
these observations, by illustrating run times for various implementa-
tions across distinct datasets and parameters on contrasting hardware 
set-ups. Another example is Catmull–Rom13 interpolations parallelized 
in a pixel-wise manner (Extended Data Fig. 2), in which choosing an 
OpenCL14 implementation for lower-sized images could escalate run 
time by several orders of magnitude compared with parallelized CPU 
processing. Similarly, threaded CPU processing for larger-sized images 
performed up to 30 times more slowly than GPU processing on profes-
sional workstations. Supplementary Tables 1–4 present benchmarks 
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execution time (Supplementary Table 5). This system enables NanoPyx 
to make instant decisions based on an initially limited set of records, 
progressively improving its performance as further data are obtained.

Each time a workflow is scheduled to run, a supervisor agent is 
responsible for selecting the best implementation based on previous run 
times; this selection is made without imposing any substantial overhead 
(Supplementary Table 5). When users do not trigger manual benchmark-
ing, the agent uses ‘factory-default’ benchmarks until sufficient run times 
have been recorded on the user’s hardware. The agent constantly moni-
tors the run times of all available methods, and can adapt to unexpected 
delays by ensuring that the optimal implementation is selected. In the case 
where a severe delay is detected, the agent predicts whether the optimal 
implementation has changed and calculates the likelihood of that delay 
being repeated in the future (Extended Data Fig. 6). Over the course of 

across ten different hardware set-ups, highlighting the limitations of 
relying on a single implementation, because it may not universally offer 
the fastest performance.

Here we introduce NanoPyx, a high-performance bioimaging 
analysis framework exploiting the Liquid Engine. It uses multiple varia-
tions (here called implementations; Supplementary Note 3) of the same 
algorithm to perform a specific task. These variations include multiple 
acceleration strategies, including PyOpenCL9, CUDA15 (using CuPy16), 
Cython8, Numba10, Transonic17 and Dask18 (Extended Data Figs. 1–5). 
Although these implementations provide numerically identical outputs 
for the same input, their computational performance differs by exploit-
ing different computational strategies. The Liquid Engine features three 
main components: (1) metaprogramming tools for multihardware imple-
mentation (using Mako templates19 and a custom script, named c2cl; 
Supplementary Note 4); (2) an automatic benchmarking system; and 
(3) a supervisor machine learning-based agent that determines the ideal 
combination of implementations to maximize performance (Fig. 2).

Liquid Engine uses a machine learning system (Supplementary 
Note 5) to predict the optimal combination of implementations 
while including device-dependent performance variations (Fig. 1 and 
Extended Data Figs. 1–5). When a user does not have access to one of 
the implementations, Liquid Engine ignores it, guaranteeing that the 
user will always be able to process their images. Dynamic benchmarking 
substantially enhances computational speed for tasks involving input 
data of varying size. This technique predicts when to switch between 
different algorithmic implementations, resulting in up to 24-fold faster 
processing compared with use of the pixel-wise parallelization strat-
egy (CPU threaded; Fig. 2). Even when compared with running both 
methods on a GPU, performing dynamic implementation selection still 
provides 1.75-fold acceleration (Supplementary Table 5).

Liquid Engine maintains a historic record of run times for each imple-
mentation. Manual benchmarking can be initiated by the user, prompt-
ing Liquid Engine to profile the execution of each implementation and 
identify the fastest (Supplementary Table 5). The system uses fuzzy logic20 
(Supplementary Note 6) to identify the benchmarked example with the 
most similar input properties, utilizing it as a baseline for the expected 
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Fig. 1 | Comparative run times of multiple implementations of an algorithm, 
run on a consumer-grade laptop and a professional workstation. a–c, The 
fastest implementation (Supplementary Note 3) depends on various factors such 
as the shape of the input data, method-specific parameters and the user device. 
a, Nonlocal mean denoising is performed on images of varying shape using a 
collection of patch sizes and distances (d). b, Run times of various conditions 
when performing analysis on a consumer-grade laptop; condition 1 could not 
be run on the GPU due to hardware limitations. T. dynamic, threaded dynamic; 
T. guided, threaded guided; T. static, threaded static. c, On a professional 
workstation, faster implementation changes with each condition, illustrating 
how it is affected by the input data and method-specific parameters.
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Fig. 2 | NanoPyx achieves optimal performance by exploiting Liquid Engine’s 
self-optimization capabilities. a, NanoPyx is built on top of the Liquid Engine, 
which automatically benchmarks implementations of all tasks in a specific 
workflow. Liquid Engine retains a historical record of the run times of each task 
and input used, allowing a machine learning-based agent to select the fastest 
combination of implementations. b, Liquid Engine dynamically chooses the 
fastest implementation for each method, based on its input parameters. For 
a workflow performing denoising on a 1,000 × 1,000 image, using NLM11,12 
(patch distance 50 pixels, patch size 50 pixels, sigma 1.0 and cut-off distance 
(h) 0.1), followed by super-resolution of the data with eSRRF21 (magnification ×5, 
radius 1.5, sensitivity 1 and using intensity weighting), Liquid Engine selects the 
fastest combination of implementations to substantially reduce run times.
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several sequential runs of the same method, we show that delay manage-
ment improved average run time by a factor of 1.8 for a two-dimensional 
(2D) convolution and by 1.5 for an established super-resolution radial 
fluctuations (eSRRF)21 analysis (Extended Data Fig. 7).

NanoPyx enhances and expands the super-resolution analysis 
methods previously included in the NanoJ21–24 plugin family, and intro-
duces additional bioimage analysis techniques, including example 
testing datasets (Supplementary Note 7). Extended Data Fig. 8 illus-
trates an example workflow where NanoPyx starts by performing drift 
correction. NanoPyx then allows super-resolution reconstructions 
using SRRF23 or its improved version, eSRRF21. Next, quality assessment 
is performed by running Fourier ring correlation25 and decorrelation 
analysis26, and by calculating a SQUIRREL error map24. Besides the 
aforementioned methods, NanoPyx also includes channel registration 
(Extended Data Fig. 9), multiple interpolators, 2D convolution, denois-
ing through NLM11,12 and several other bioimage analysis methods 
(Supplementary Table 6). Although not all of these methods exploit the 
advantages of Liquid Engine (Supplementary Table 6), we are actively 
developing new parallelization strategies for the remaining methods.

NanoPyx is accessible as a Python library, which can be installed via 
either Python package index or our GitHub repository (Supplementary 
Table 5). Liquid Engine is also available as a standalone Python package 
that is readily integrated in other projects. Alongside these Python 
libraries, we provide cookiecutter (https://cookiecutter.readthedocs.
io) template files to help developers implement their own methods 
using Liquid Engine (Supplementary Note 8). Secondly, we provide 
Jupyter notebooks27 (Supplementary Fig. 1a and Supplementary 
Table 5). Users of these notebooks are not required to interact with 
any code directly, because a graphical user interface is generated28. 
Lastly, we developed a plugin for napari7, a Python image viewer (Sup-
plementary Fig. 1b). By offering these three distinct user interfaces, 
we ensure that NanoPyx can be readily utilized by users irrespective 
of their coding proficiency level. In NanoPyx’s repository, we have 
provided usage guidelines for end-users along with several tutorials, 
including videos (Supplementary Table 7), on how to run NanoPyx 
through any of its interfaces, and how to implement their own methods 
exploiting optimization of Liquid Engine (Supplementary Note 8).

Looking ahead, a priority for NanoPyx is expanding support for 
emerging techniques such as artificial intelligence-assisted imag-
ing and smart microscopes. Because these methods involve pro-
cessing data in real time during acquisition, NanoPyx’s accelerated 
performance becomes critical. In addition, we aim to incorporate 
more diverse processing workflows beyond currently implemented 
methods.

Cumulatively, NanoPyx delivers adaptive performance optimiza-
tion to accelerate bioimage analysis while retaining modular design 
and easy adoption. This flexible framework is important and timely, 
given the expanding volumes of microscopy data and the need for 
data-driven reactive microscopy. The optimization principles embod-
ied in its Liquid Engine can be extended to other scientific workloads 
requiring high computational efficiency. As data scales expand, Nan-
oPyx offers researchers an actively improving platform to execute 
demanding microscopy workflows.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
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Methods
Mammalian cell culture
Human umbilical vein endothelial cells (HUVEC) (PromoCell, cata-
log no. C-12203) were grown in endothelial cell growth medium  
(PromoCell, catalog no. C-22010), with a supplementary mix ((Pro-
mocell, catalog no. C-39215) and 1% penicillin/streptomycin (Sigma); 
Fig. 1). Endothelial primary cells from P0 (commercial vial) were 
expanded to a P3 stock frozen at −80 °C to standardize the experi-
mental replicates. A549 cells (The European Collection of Authenti-
cated Cell Cultures) were cultured in phenol red-free, high-glucose, 
l-glutamine containing DMEM (Thermo Fisher Scientific), supple-
mented with 10% (v/v) fetal bovine serum (Sigma) and 1% (v/v) penicil-
lin/streptomycin (Thermo Fisher Scientific), at 37 °C in an incubator 
with 5% CO2 (Extended Data Fig. 8).

Sample preparation for microscopy
HUVEC were seeded in an eight-well, glass-bottom µ-slide (Ibidi, cata-
log no. 80807) precoated with warm endothelial cell growth medium 
without antibiotics (50,000 cells per well). Cells were then grown for 
48 h, fixed with prewarmed 4% paraformaldehyde in PBS (Thermo 
Fisher Scientific, catalog no. 28908) for 10 min at 37 °C and stained 
with DAPI. A549 cells were seeded on an eight-well, glass-bottom µ-slide 
(ibidi) at density 0.05–0.10 × 106 cells cm−2. Following 24 h incubation 
at 37 °C and under 5% CO2, cells were washed once with PBS and fixed 
for 20 min at 23 °C in 4% paraformaldehyde in PBS. Following fixation, 
cells were washed three times in PBS (5 min each), quenched for 10 min 
in a solution of 300 mM glycine (in PBS) and permeabilized using a 
solution of 0.2% Triton-X (in PBS) for 20 min at 23 °C. Following three 
washes (5 min each) in washing buffer (0.05% Tween-20 in PBS), cells 
were blocked for 30 min in blocking buffer (5% BSA and 0.05% Tween-
20 in PBS). Samples were then incubated with a mix of anti-α-tubulin 
antibodies (1 µg ml−1 clone DM1A (Sigma), 2 µg ml−1 clone 10D8 (Bio-
Legend), 2 µg ml−1 clone AA10, BioLegend) and anti-septin 7 (1 µg ml−1, 
catalog no. 18991, IBL) for 16 h at 4 °C in blocking buffer. Following 
three washes (5 min each) in washing buffer, cells were incubated with 
Alexa Fluor 647 conjugated goat anti-mouse IgG and Alexa Fluor 555 
conjugated goat anti-rabbit IgG (6 µg ml−1 in blocking buffer) for 1 h at 
23 °C. Cell nuclei were counterstained with Hoechst 33342 (1 µg ml−1). 
Cells were then washed three times (5 min each) in washing buffer and 
once in 1× PBS for 10 min. Finally, cells were mounted using glucose 
oxidase and β-mercaptoethylamine (50 mM Tris, 10 mM NaCl, pH 8.0, 
supplemented with 50 mM β-mercaptoethylamine, 10% (w/v) glucose, 
0.5 mg ml−1 glucose oxidase and 40 µg ml−1 catalase).

Data acquisition
HUVEC were imaged using a Marianas spinning-disk confocal micro-
scope equipped with a Yokogawa CSU-W1 scanning unit on an inverted 
Zeiss Axio Observer Z1 microscope, controlled by SlideBook 6 (Intel-
ligent Imaging Innovations, Inc.) (Fig. 1). Images were acquired using 
an Evolve 512 EMC CD camera (chip size, 512 × 512; Photometrics); 
the objective used was an M27 ×63/1.4 numerical aperture (NA), oil 
immersion (Plan-Apochromat). Data acquisition was performed with 
a Nanoimager microscope (Oxford Nanoimaging) equipped with 
an Olympus ×100/1.45 NA oil-immersion objective (Extended Data 
Fig. 8). Imaging was performed using 405-, 488- and 640-nm lasers 
for Hoechst-33342, AlexaFluor555 and AlexaFluor647 excitation, 
respectively. Fluorescence was detected using a sCMOS camera (ORCA 
Flash, 16 bit). For channel 0, a dichroic filter with bands of 498–551 and 
576–620 nm was used and, for channel 1, a 665–705-nm dichroic filter. 
Sequential multicolor acquisition was performed for AlexaFluor647, 
AlexaFluor555 and Hoechst-33342. Using epifluorescence illumination, 
a pulse of high laser power (90%) of the 640-nm laser was used, with 
10,000 frames immediately acquired. The sample was then excited 
with the 488-nm laser (13.7% laser power), with 500 frames acquired, 
followed by 405-nm laser excitation (40% laser power) with acquisition 

of a further 500 frames. For all acquisitions, an exposure time of 10 ms  
was used.

Liquid Engine agent
Run times of methods implemented in NanoPyx through Liquid Engine 
are locally stored on the user’s home folder inside a folder titled .liq-
uid_engine. For OpenCL implementations, the agent also stores an iden-
tification of the device and can detect hardware changes. Whenever a 
method is run through Liquid Engine, the overseeing agent reads the 
50 most recent recorded run times. If there are fewer than 50 recorded 
runs but more than three, the agent will proceed with the available 
recorded runs. However, if there are fewer than three runs recorded, 
all Liquid Engine methods will revert to default benchmarks that can 
be either supplied with the package or defined by the user. For each 
implementation, the agent then divides the available corresponding 
run times into two separate sets of equal length, one containing the 
fastest run times and the other the slowest. We then calculate average 
and standard deviation for both sets, namely FastAverage, FastStdDev, 
SlowAverage and SlowStdDev (equations (1–5)). This split in run times 
helps identify the start or end of a delay. By comparison against the set 
of fastest run times, we ensure that previous delayed run times do not 
skew normal average run time. On the other hand, the set of slowest run 
times, although not guaranteed to be exactly like a delayed run time, 
helps us estimate a lower bound to that which a higher-than-average 
run time could look like.

Once the method has finished running, the agent checks whether 
there was a delay (Delay). A delayed implementation is defined by hav-
ing its run time (Measured Run Time) higher than the recorded average 
run time of the fastest runs, plus four times the standard deviation of 
the fastest runs (equation (1)). If a delay is detected (Extended Data 
Fig. 6), the agent will also calculate the delay factor (DelayFactor, equa-
tion (2)) and will activate a probabilistic approach that stochastically 
selects which method to run.

This is performed using a logistic regression model that calcu-
lates the probability of the delay being present on the next run (Pdelay), 
and by adjusting the expected run time of the delayed implementa-
tion (Adjusted Run Time) according to equation (3), while still using 
FastAverage for all nondelayed implementations. The agent then picks 
which implementation to use, based on probabilities assigned to each 
implementation (given by PRun Time k for a given implementation k), using 
1 over the square of adjusted run time and normalized for the run times 
of all other implementations (equation (4)). This stochastic approach 
ensures that the agent will still run the delayed implementation from 
time to time to check whether that delay is still present.

During a subsequent run, the agent will evaluate whether there is 
a delay. It will consider the delay as over when the measured run time 
is either (1) lower than the slow average minus the standard deviation 
(Std) of the slowest runs, or (2) lower than the fast average plus the 
standard deviation of the fastest runs (as per equation (5)). Once the 
delay is over, the agent will revert to selecting which implementation 
to use based on the fast average of each implementation (as shown in 
Extended Data Figs. 6 and 7).

Delay = True if Measured Run Time > (FastAverage + 4 × Std) (1)

DelayFactor = Measured Run Time
FastAverage (2)

Adjusted Run Time

= FastAverage × (1 − Pdelay) + FastAverage × DelayFactor × Pdelay
(3)

PRun Time k = ∑ 1
Run Time2 ×

1
Adjusted Run Time2k

2 (4)
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Delay = False if (Measured Run Time < (SlowAverage − SlowStdDev))

∨ (Measured Run Time > (FastAverage + FastStdDev))
(5)

Benchmarking run times
For laptop benchmarks, a MacBook Air M1 Pro with 16 GB of 
random-access memory (RAM) and a 512-GB, solid-state drive (SSD) 
was used. For the professional workstation, a custom-made desktop 
computer was used containing an Intel i9-13900K, a NVIDIA RTX 4090 
with 24 GB of dedicated video memory, a 1 TB SSD and 128 GB of DDR5 
RAM. The first benchmark performed (Fig. 1 and Extended Data Fig. 2) 
was a fivefold upsampling of the input data, using a Catmull–Rom13 inter-
polator. Benchmarks were performed on three different input images 
with shapes of 1 × 10 × 10, 10 × 10 × 10, 10 × 100 × 100, 10 × 300 × 300, 
100 × 300 × 300 and 500 × 300×300 (time points × height × width). The 
second benchmarks (Extended Data Fig. 1) were nonlocal means denois-
ing performed on images of 200 × 200, 500 × 500 and 1,000 × 1,000 
pixels using, respectively, 10, 100 and 50 as patch distance, with varying 
patch size (5, 10, 20, 50 and 100). The third benchmarks (Extended Data 
Figs. 2–5) were 2D convolutions using a kernel of varying size (1, 5, 9, 13, 
17, 21), where all kernel values are 1, on images of varying size (100, 500, 
1,000, 2,500, 5,000, 7,500, 10,000, 15,000 or 20,000 pixels for both 
dimensions). Supplementary Tables 1–4 describe ten different hardware 
set-ups used for benchmarking three different conditions of 2D con-
volution, Catmull–Rom interpolation and nonlocal means denoising.

Benchmarking delay management
For evaluation of Liquid Engine’s delay management capabilities, we 
benchmarked its performance on 2D convolutions and eSRRF recon-
structions under induced delay conditions. The hardware used was 
a high-end desktop with an Intel i9-13900K CPU, NVIDIA RTX 4090 
GPU, 128-GB DDR5 RAM and 1-TB SSD. For the 2D convolution task, 
we applied a 9 × 9 kernel on 6,000 × 6,000-pixel random images. To 
simulate a delay, we used a separate Python process that allocated 
>24 GB of GPU memory for irrelevant computations, thus overload-
ing the GPU. We executed 400 sequential convolutions, introducing 
artificial delay during convolutions 101–200, and compared run times 
with and without Liquid Engine optimization enabled. Similarly, for 
eSRRF, we reconstructed a 100 × 100 × 100-pixel random volume with 
parameters magnification = 5, radius = 1.5 and sensitivity = 1. Artificial 
delay was induced on reconstructions 51–100 out of a total of 200. Run 
times were again collected and analyzed with Liquid Engine on and off.  
In both tasks, Liquid Engine detected abnormal delay during the over-
loaded period based on run time spikes; it then switched its imple-
mentation preference probabilistically to avoid using the delayed  
GPU code.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in the figures are either listed in Supplementary 
Table 8 or are available for download via Zenodo at https://zenodo.
org/record/8318395 (ref. 29). Source data are provided with this paper.

Code availability
The NanoPyx python library and Jupyter Notebooks can be found in 
our Github repository (https://github.com/HenriquesLab/NanoPyx). 
The Liquid Engine Python library can be found in our GitHub repository 
(https://github.com/HenriquesLab/LiquidEngine). The cookiecut-
ter templates can be found in this GitHub repository (https://github.
com/HenriquesLab/LiquidEngineCookieCutter). The napari plugin 
implementing all NanoPyx methods can be found in a separate Github 
repository (https://github.com/HenriquesLab/napari-NanoPyx).
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Extended Data Fig. 1 | Run times of non-local means denoising are dependent 
on their implementation. The fastest run time for non-local means denoising 
changes according to the parameters defined. The pixel-wise implementation 
thrives when both the patch distance and patch size is relatively small.  

The patch-wise implementation is virtually independent on the patch size and 
although it sports higher memory costs its computational efficiency makes it an 
attractive option for bigger patch sizes.
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Extended Data Fig. 2 | Ratio between the run times of OpenCL and other 
implemented run types. Run times of a 5x Catmull-rom13 interpolation were 
measured across multiple input data sizes using either a MacBook Air M1  
(A), a Professional Workstation (B) or Google Colaboratory (C). Using the fastest 

implementation can lead to up to 10x faster code execution. Area within dashed 
lines correspond to kernel and image sizes where OpenCL is faster than other 
implementations.
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Extended Data Fig. 3 | Ratio between the run times of a 2D convolution. Run times were measured across multiple input data sizes and kernel sizes using either a 
MacBook Air M1 (A) or a Professional Workstation (B). Areas within dashed lines correspond to kernel and image sizes where OpenCL is faster than threaded CPU.
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Extended Data Fig. 4 | Run time of each implementation is dependent on the 
shape of input data. A 2D convolution was performed on images with increasing 
size using either a MacBook Air M1 Pro (A) or a professional workstation (B). A 21 
by 21 kernel was used for the laptop and a 5x5 for the workstation. The run times 

of each implementation vary according to the size of the input image. Bottom 
panels correspond to zoomed in windows of top panels, indicated by dotted 
boxes.
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Extended Data Fig. 5 | Kernel size impacts which implementation is the fastest. 
A 2D convolution was performed on images with varying kernel sizes, ranging 
from 1 to 21 (every 4) using either a MacBook Air M1 Pro on a 500x500 image  
(A) or a professional workstation on 2500x2500 image (B). While unthreaded is 

virtually always the slowest implementation, the threaded implementations are 
only the fastest for small kernel sizes, after which a GPU-based implementation 
becomes the fastest. Bottom panels correspond to zoomed in windows of top 
panels, indicated by dotted boxes.
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Extended Data Fig. 6 | Schematic of the Agent decision making for delay 
management. The agent identifies delays when an implementation’s run time 
exceeds the fastest average plus four standard deviations (Equation 1). Upon 
detection, it calculates a delay factor (Equation 2) and uses a probabilistic 
approach with Logistic Regression to adjust run times (Equation 3) and 

select implementations stochastically (Equation 4). This ensures delayed 
implementations are periodically testes while favoring faster alternatives.  
A delay is considered resolved when the run time falls below thresholds defined 
in Equation 5, after which the agent reverts to selecting implementations based 
on their fast average run times.
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Extended Data Fig. 7 | Example of delay management by the Liquid engine. 
Multiple two-dimensional convolutions (A) and eSRRF analysis (B) were run 
sequentially in a professional workstation. Starting from two initial benchmarks, 
the Agent is responsible for informing the Liquid Engine on the best probable 

implementation. An artificial delay was induced by overloading the GPU with 
superfluous calculations in a separate Python interpreter. Dashed lines represent 
average run times.
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Extended Data Fig. 8 | Microscopy image processing workflow using NanoPyx 
methods. Through NanoPyx, users can correct drift, generate a super-resolved 
image using eSRRF21, assess the quality of the generated image using Fourier 
Ring Correlation (FRC)25, Image Decorrelation Analysis26, and NanoJ-SQUIRREL24 

metrics. NanoPyx methods are made available as a Python library, Jupyter 
Notebooks that can be run locally or through Google Colaboratory,  
and as a napari plugin. Scale bars, 10 µm.
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Extended Data Fig. 9 | Example channel registration of a calibration slide. NanoPyx allows users to perform channel registration based on the NanoJ22 
implementation. Example data of calibration slide obtained from the freely available data in the Fast4DReg30 publication.
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