nature methods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

Efficiently accelerated bioimage analysis
withNanoPyXx, aLiquid Engine-powered

Pythonframework

Received: 5 September 2023

Accepted: 7 November 2024

Published online: 02 January 2025

Bruno M. Saraiva'?%, Inés Cunha'**'2, Anténio D. Brito ® ">, Gautier Follain®®,
Raquel Portela®, Robert Haase ®’, Pedro M. Pereira®°®,
Guillaume Jacquemet ® 52°° & Ricardo Henriques ® >%"

W Check for updates

The expanding scale and complexity of microscopy image datasets require

accelerated analytical workflows. NanoPyx meets this need through an
adaptive framework enhanced for high-speed analysis. At the core of
NanoPyx, the Liquid Engine dynamically generates optimized central
processing unit and graphics processing unit code variations, learning and
predicting the fastest based on input data and hardware. This data-driven
optimization achieves considerably faster processing, becoming broadly
relevant to reactive microscopy and computing fields requiring efficiency.

Super-resolution microscopy has revolutionized cell biology by ena-
bling fluorescence imaging at an unprecedented resolution'™*. However,
data collected from these experiments often require specific analytical
procedures, such asimage registration, resolution enhancement and
quantification of data quality and resolution. Many of these procedures
use open-sourceimage analysis software, particularly ImageJ°’/F1JI° or
napari’. The computational performance of each of these tools bears
notable implications for processing time, which becomes especially
salient given the increasing need for high-performance computingin
bioimaginganalysis. In this work we present NanoPyXx, a Python frame-
work for microscopy image analysis that exploits the Liquid Engine to
massively accelerate analysis workflows.

With the increasing use of deep learning, many bioimaging analy-
sis pipelines are now being developed in Python. Pure Python code
often runs on a single central processing unit (CPU) core, impact-
ing the performance and speed of Python frameworks. Alternative
solutions, such as Cython®, PyOpenCL’ and Numba'’, allow CPU and
graphics processing unit (GPU) parallelization, which can reduce
run times (Supplementary Note 1). However, identifying the swiftest
implementation depends onthe hardware, input dataand parameters.

Figurelillustrates acase where denoising the largerimage with a nonlo-
cal means (NLM) algorithm™"?is approximately two times faster when
using a CPU unthreaded strategy than a pixel-wise threaded imple-
mentation strategy on a GPU ina professional workstation (Fig.1cand
Supplementary Note 2). Notably, the same algorithm cannot be run on
thetesting laptop’s GPU with the same parameters due to architecture
limitations (Fig. 1b). This means that certain acceleration strategies
have hardware constraints and require a different approach. How-
ever, for other conditions (condition 2 on workstation and laptop and
condition 3 on laptop), GPU-based processing is a faster alternative
for the same NLM algorithm. Extended Data Figs. 1-5 further support
these observations, by illustrating run times for various implementa-
tionsacross distinct datasets and parameters on contrasting hardware
set-ups. Another example is Catmull-Rom” interpolations parallelized
in a pixel-wise manner (Extended Data Fig. 2), in which choosing an
OpenCL" implementation for lower-sized images could escalate run
time by several orders of magnitude compared with parallelized CPU
processing. Similarly, threaded CPU processing for larger-sized images
performed up to 30 times more slowly than GPU processing on profes-
sional workstations. Supplementary Tables 1-4 present benchmarks

'Instituto Gulbenkian de Ciéncia, Oeiras, Portugal. 2Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal. ®Instituto Superior Técnico, Lisbon,
Portugal. *Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. ®Instituto de Tecnologia
Quimica e Biolégica Anténio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. °Turku Bioscience Centre, University of Turku and Abo Akademi
University, Turku, Finland. ’DFG Cluster of Excellence “Physics of Life”, TU Dresden, Dresden, Germany. ®Turku Bioimaging, University of Turku and Abo
Akademi University, Turku, Finland. °Faculty of Science and Engineering, Cell Biology, Abo Akademi University, Turku, Finland. °InFLAMES Research
Flagship Center, Abo Akademi University, Turku, Finland. "UCL-Laboratory for Molecular Cell Biology, University College London, London, UK.

"2These authors contributed equally: Bruno M. Saraiva, Inés Cunha, Anténio D. Brito.

e-mail: r.henriques@itgb.unl.pt

Nature Methods

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02562-6
http://orcid.org/0009-0001-1769-2627
http://orcid.org/0000-0003-0495-9529
http://orcid.org/0000-0001-5949-2327
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-9286-920X
http://orcid.org/0000-0002-2043-5234
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02562-6&domain=pdf
mailto:r.henriques@itqb.unl.pt

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

a Condition 1 Fast 222
B 2 Condition 2 .
i Condition 3
Benchmarked task:
nonlocal 200
means image
denoising
1 OO Dimensions in pixels Slow @
b e} Runtime on laptop c Runtime on workstation
Condition Condition Condition Condition Condition Condition
Implementation 1 2 3 1 2 3
Hardware
€Al % limitation Qs
CPU threaded % 1,015s | 32.33s 1204s | 0.0831s
CPU T. dynamic % 990.0s | 30.03s 11.68's -
CPUT. guided T [ECIOERM VLI 166 -
CPU T. static % l 32.28s 1241s
CPU unthreaded % - 89.22s 3761s

Fig. 1| Comparative run times of multiple implementations of an algorithm,
runonaconsumer-grade laptop and a professional workstation. a-c, The
fastestimplementation (Supplementary Note 3) depends on various factors such
asthe shape of theinput data, method-specific parameters and the user device.
a, Nonlocal mean denoising is performed on images of varying shape using a
collection of patch sizes and distances (d). b, Run times of various conditions
when performing analysis on a consumer-grade laptop; condition 1 could not
be runonthe GPU due to hardware limitations. T. dynamic, threaded dynamic;
T.guided, threaded guided; T. static, threaded static. ¢, On a professional
workstation, faster implementation changes with each condition, illustrating
how itis affected by the input dataand method-specific parameters.

across ten different hardware set-ups, highlighting the limitations of
relying onasingle implementation, because it may not universally offer
the fastest performance.

Here we introduce NanoPyx, a high-performance bioimaging
analysis framework exploiting the Liquid Engine. It uses multiple varia-
tions (here called implementations; Supplementary Note 3) of the same
algorithm to perform a specific task. These variations include multiple
acceleration strategies, including PyOpenCL®, CUDA" (using CuPy"),
Cython®, Numba'®, Transonic” and Dask'® (Extended Data Figs. 1-5).
Although theseimplementations provide numerically identical outputs
forthe sameinput, their computational performance differs by exploit-
ing different computational strategies. The Liquid Engine features three
main components: (1) metaprogramming tools for multihardwareimple-
mentation (using Mako templates™ and a custom script, named c2cl;
Supplementary Note 4); (2) an automatic benchmarking system; and
(3) asupervisor machine learning-based agent that determines theideal
combination of implementations to maximize performance (Fig. 2).

Liquid Engine uses a machine learning system (Supplementary
Note 5) to predict the optimal combination of implementations
whileincluding device-dependent performance variations (Fig. 1and
Extended Data Figs. 1-5). When a user does not have access to one of
the implementations, Liquid Engine ignores it, guaranteeing that the
user willalwaysbe able to process theirimages. Dynamic benchmarking
substantially enhances computational speed for tasks involving input
data of varying size. This technique predicts when to switch between
different algorithmicimplementations, resultingin up to 24-fold faster
processing compared with use of the pixel-wise parallelization strat-
egy (CPU threaded; Fig. 2). Even when compared with running both
methods onaGPU, performing dynamicimplementation selection still
provides 1.75-fold acceleration (Supplementary Table 5).

Liquid Engine maintains ahistoric record of runtimesforeachimple-
mentation. Manual benchmarking can be initiated by the user, prompt-
ing Liquid Engine to profile the execution of each implementation and
identify the fastest (Supplementary Table 5). The system uses fuzzy logic®
(Supplementary Note 6) to identify the benchmarked example with the
most similar input properties, utilizing it as a baseline for the expected

Task 1

Input

Data dimensions

@@ Agent @ Run time A_""": Record
11 11 1 1 1] 1
11111 11112
212]... 2]3]...
LILILIL | | LI
® cpru CPU © cru @ cru
b Run time in workstation C}
-
. Task 1 Task 2 Workflow
Implementation Denoising eSRRF ~ runtime
@ CPU unthreaded % 29.55s 49545 |-=== > 79.10s
CPU threaded f3izif | 725.3 s 3.906s f---- > 729.69s
@ GPU % 51.94's 0.209s f---- > 5215s
T T
Fastest path 1 r===>1 29.76s
OO@ Liquid Engine -

Fig. 2| NanoPyx achieves optimal performance by exploiting Liquid Engine’s
self-optimization capabilities. a, NanoPyx is built on top of the Liquid Engine,
which automatically benchmarks implementations of all tasks in a specific
workflow. Liquid Engine retains a historical record of the run times of each task
and inputused, allowing amachine learning-based agent to select the fastest
combination of implementations. b, Liquid Engine dynamically chooses the
fastestimplementation for each method, based onits input parameters. For
aworkflow performing denoising ona1,000 x 1,000 image, using NLM""?
(patch distance 50 pixels, patch size 50 pixels, sigma 1.0 and cut-off distance
(h) 0.1), followed by super-resolution of the data with eSRRF* (magnification x5,
radius 1.5, sensitivity 1and using intensity weighting), Liquid Engine selects the
fastest combination of implementations to substantially reduce run times.

execution time (Supplementary Table 5). This system enables NanoPyx
to make instant decisions based on an initially limited set of records,
progressively improving its performance as further data are obtained.
Each time a workflow is scheduled to run, a supervisor agent is
responsible for selecting the bestimplementation based on previous run
times; this selectionis made withoutimposing any substantial overhead
(Supplementary Table 5). Whenusers do not trigger manualbenchmark-
ing, theagentuses ‘factory-default’benchmarks until sufficient run times
have beenrecorded onthe user’s hardware. The agent constantly moni-
torsthe runtimes of all available methods, and can adapt to unexpected
delaysby ensuring that the optimalimplementationis selected. Inthe case
whereaseveredelayis detected, the agent predicts whether the optimal
implementation has changed and calculates the likelihood of that delay
being repeated in the future (Extended Data Fig. 6). Over the course of

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

several sequential runs of the same method, we show that delay manage-
mentimproved average runtime by afactor of 1.8 foratwo-dimensional
(2D) convolution and by 1.5 for an established super-resolution radial
fluctuations (¢SRRF)* analysis (Extended DataFig. 7).

NanoPyx enhances and expands the super-resolution analysis
methods previously included in the NanoJ* * plugin family, and intro-
duces additional bioimage analysis techniques, including example
testing datasets (Supplementary Note 7). Extended Data Fig. 8 illus-
trates anexample workflow where NanoPyx starts by performing drift
correction. NanoPyx then allows super-resolution reconstructions
using SRRF* oritsimproved version, eSRRF”. Next, quality assessment
is performed by running Fourier ring correlation® and decorrelation
analysis®, and by calculating a SQUIRREL error map**. Besides the
aforementioned methods, NanoPyx also includes channel registration
(Extended DataFig. 9), multiple interpolators, 2D convolution, denois-
ing through NLM""* and several other bioimage analysis methods
(Supplementary Table 6). Although not all of these methods exploit the
advantages of Liquid Engine (Supplementary Table 6), we are actively
developing new parallelization strategies for the remaining methods.

NanoPyxisaccessibleasaPythonlibrary, which canbeinstalled via
either Python package index or our GitHub repository (Supplementary
Table5). Liquid Engineis also available as astandalone Python package
that is readily integrated in other projects. Alongside these Python
libraries, we provide cookiecutter (https://cookiecutter.readthedocs.
io) template files to help developers implement their own methods
using Liquid Engine (Supplementary Note 8). Secondly, we provide
Jupyter notebooks? (Supplementary Fig. 1a and Supplementary
Table 5). Users of these notebooks are not required to interact with
any code directly, because a graphical user interface is generated?.
Lastly, we developed a plugin for napari’,a Python image viewer (Sup-
plementary Fig. 1b). By offering these three distinct user interfaces,
we ensure that NanoPyx can be readily utilized by users irrespective
of their coding proficiency level. In NanoPyx’s repository, we have
provided usage guidelines for end-users along with several tutorials,
including videos (Supplementary Table 7), on how to run NanoPyx
throughany of its interfaces, and how to implement their own methods
exploiting optimization of Liquid Engine (Supplementary Note 8).

Looking ahead, a priority for NanoPyx is expanding support for
emerging techniques such as artificial intelligence-assisted imag-
ing and smart microscopes. Because these methods involve pro-
cessing datain real time during acquisition, NanoPyx’s accelerated
performance becomes critical. In addition, we aim to incorporate
more diverse processing workflows beyond currently implemented
methods.

Cumulatively, NanoPyx delivers adaptive performance optimiza-
tion to accelerate bioimage analysis while retaining modular design
and easy adoption. This flexible framework is important and timely,
given the expanding volumes of microscopy data and the need for
data-driven reactive microscopy. The optimization principles embod-
iedinits Liquid Engine can be extended to other scientific workloads
requiring high computational efficiency. As data scales expand, Nan-
oPyx offers researchers an actively improving platform to execute
demanding microscopy workflows.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41592-024-02562-6.

References

1. Rust, M. J., Bates, M. & Zhuang, X. Stochastic optical
reconstruction microscopy (STORM) provides sub-diffraction-
limit image resolution. Nat. Methods 3, 793-795 (2006).

10.

M.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by
nanoscale localization of photo-switchable fluorescent probes.
Curr. Opin. Chem. Biol. 12, 505-514 (2008).

Hell, S. W. & Wichmann, J. Breaking the diffraction

resolution limit by stimulated emission: stimulated-emission-
depletion fluorescence microscopy. Opt. Lett. 19, 780-782
(1994).

Guerra, J. M. Super-resolution through illumination by
diffraction-born evanescent waves. Appl. Phys. Lett. 66,
3555-3557 (1995).

Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The
ImagelJ ecosystem: an open platform for biomedical image
analysis. Mol. Reprod. Dev. 82, 518-529 (2015).

Schindelin, J. et al. Fiji: an open-source platform for
biological-image analysis. Nat. Methods 9, 676-682 (2012).
Sofroniew, N. et al. napari: A multi-dimensional image viewer
for Python. Zenodo https://doi.org/10.5281/zenodo.7276432
(2022).

Behnel, S. et al. Cython: the best of both worlds. Comput. Sci.
Eng. 13, 31-39 (20M1).

Kloeckner, A. et al. PyOpenCL. Zenodo https://doi.org/10.5281/
zenodo.7063192 (2022).

Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python
JIT compiler. In Proc. Second Workshop on the LLVM Compiler
Infrastructure in HPC 1-6 (ACM, 2015);
https://doi.org/10.1145/2833157.2833162

Buades, A., Coll, B. & Morel, J.-M. Non-local means denoising.
Image Process. Line 1, 208-212 (2011).

Darbon, J., Cunha, A., Chan, T. F., Osher, S. & Jensen, G. J. Fast
nonlocal filtering applied to electron cryomicroscopy. In Proc.
5th IEEE International Symposium on Biomedical Imaging:

From Nano to Macro 1331-1334 (2008); https://doi.org/10.1109/
ISBI.2008.4541250

Catmull, E. & Rom, R. A class of local interpolating splines.

in Computer Aided Geometric Design (eds Barnhill, R. E. &
Riesenfeld, R. F.) 317-326 (Academic Press, 1974); https://doi.org/
10.1016/B978-0-12-079050-0.50020-5

Stone, J. E., Gohara, D. & Shi, G. OpenCL: a parallel programming
standard for heterogeneous computing systems. Comput. Sci.
Eng. 12, 66-73 (2010).

CUDA Toolkit - Free Tools and Training. NVIDIA Developer
https://developer.nvidia.com/cuda-toolkit

Okuta, R., Unno, Y., Nishino, D., Hido, S. & Loomis, C. CuPy:

A NumPy-compatible library for NVIDIA GPU calculations. In Proc.
Workshop on Machine Learning Systems (LearningSys) in The
Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS) (2017).

fluiddyn/transonic Make your Python code fly at transonic
speeds! GitHub https://github.com/fluiddyn/transonic

(2019).

Rocklin, M. Dask: parallel computation with blocked algorithms
and task scheduling. In SciPy Proc. 126-132 (2015); https://doi.org/
10.25080/Majora-7b98e3ed-013

Bayer, M. Mako: templates for Python. BibSonomy www.
bibsonomy.org/bibtex/aa47d818a1c2f889b7456117003b3d42
(2012).

Novak, V., Perfiljeva, I. & Mockor, J. Mathematical Principles of
Fuzzy Logic (Springer, 1999); https://doi.org/10.1007/978-1-4615-
5217-8

Laine, R. F. et al. High-fidelity 3D live-cell nanoscopy through
data-driven enhanced super-resolution radial fluctuation.

Nat. Methods 20, 1949-1956 (2023).

Laine, R. F. et al. NanoJ: a high-performance open-source
super-resolution microscopy toolbox. J. Phys. Appl. Phys. 52,
163001 (2019).

Nature Methods

http://www.nature.com/naturemethods
https://cookiecutter.readthedocs.io
https://cookiecutter.readthedocs.io
https://doi.org/10.1038/s41592-024-02562-6
https://doi.org/10.5281/zenodo.7276432
https://doi.org/10.5281/zenodo.7063192
https://doi.org/10.5281/zenodo.7063192
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/ISBI.2008.4541250
https://doi.org/10.1109/ISBI.2008.4541250
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/fluiddyn/transonic
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
http://www.bibsonomy.org/bibtex/aa47d818a1c2f889b7456117003b3d42
http://www.bibsonomy.org/bibtex/aa47d818a1c2f889b7456117003b3d42
https://doi.org/10.1007/978-1-4615-5217-8
https://doi.org/10.1007/978-1-4615-5217-8

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

23. Gustafsson, N. et al. Fast live-cell conventional fluorophore
nanoscopy with ImageJ through super-resolution radial
fluctuations. Nat. Commun. 7, 12471 (2016).

24. Culley, S. et al. Quantitative mapping and minimization of
super-resolution optical imaging artifacts. Nat. Methods 15,
263-266 (2018).

25. Nieuwenhuizen, R. P. J. et al. Measuring image resolution in
optical nanoscopy. Nat. Methods 10, 557-562 (2013).

26. Descloux, A., GruBmayer, K. S. & Radenovic, A. Parameter-free
image resolution estimation based on decorrelation analysis.
Nat. Methods 16, 918-924 (2019).

27. Kluyver, T. et al. Jupyter Notebooks - a publishing format for
reproducible computational workflows. In Positioning and Power
in Academic Publishing: Players 87-90 (10OS Press, 2016);
https://doi.org/10.3233/978-1-61499-649-1-87

28. Haase, R., Bragantini, J. & Amsalem, O. haesleinhuepf/stack
view: 0.6.2. Zenodo https://doi.org/10.5281/zenodo.7847336
(2023).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

Nature Methods

http://www.nature.com/naturemethods
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.5281/zenodo.7847336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

Methods

Mammalian cell culture

Human umbilical vein endothelial cells (HUVEC) (PromoCell, cata-
log no. C-12203) were grown in endothelial cell growth medium
(PromocCell, catalog no. C-22010), with a supplementary mix ((Pro-
mocell, catalog no. C-39215) and 1% penicillin/streptomycin (Sigma);
Fig. 1). Endothelial primary cells from PO (commercial vial) were
expanded to a P3 stock frozen at —80 °C to standardize the experi-
mental replicates. A549 cells (The European Collection of Authenti-
cated Cell Cultures) were cultured in phenol red-free, high-glucose,
L-glutamine containing DMEM (Thermo Fisher Scientific), supple-
mented with10% (v/v) fetal bovine serum (Sigma) and 1% (v/v) penicil-
lin/streptomycin (Thermo Fisher Scientific), at 37 °C in an incubator
with 5% CO, (Extended DataFig. 8).

Sample preparation for microscopy

HUVEC were seeded in an eight-well, glass-bottom p-slide (Ibidi, cata-
log no. 80807) precoated with warm endothelial cell growth medium
without antibiotics (50,000 cells per well). Cells were then grown for
48 h, fixed with prewarmed 4% paraformaldehyde in PBS (Thermo
Fisher Scientific, catalog no. 28908) for 10 min at 37 °C and stained
with DAPI. A549 cells were seeded on an eight-well, glass-bottom p-slide
(ibidi) at density 0.05-0.10 x 10° cells cm™. Following 24 hincubation
at37 °C and under 5% CO,, cells were washed once with PBS and fixed
for20 minat23 °Cin 4% paraformaldehydein PBS. Following fixation,
cellswere washed three timesin PBS (5 mineach), quenched for 10 min
in a solution of 300 mM glycine (in PBS) and permeabilized using a
solution of 0.2% Triton-X (in PBS) for 20 min at 23 °C. Following three
washes (5 min each) in washing buffer (0.05% Tween-20 in PBS), cells
were blocked for 30 min in blocking buffer (5% BSA and 0.05% Tween-
20 in PBS). Samples were then incubated with a mix of anti-a-tubulin
antibodies (1 pg ml™ clone DMIA (Sigma), 2 pg ml™ clone 10D8 (Bio-
Legend), 2 pg ml™ clone AA10, BioLegend) and anti-septin 7 (1 pg ml 7,
catalog no. 18991, IBL) for 16 h at 4 °C in blocking buffer. Following
three washes (5 min each) in washing buffer, cells were incubated with
Alexa Fluor 647 conjugated goat anti-mouse IgG and Alexa Fluor 555
conjugated goat anti-rabbit IgG (6 pg ml™inblocking buffer) for1hat
23 °C. Cell nuclei were counterstained with Hoechst 33342 (1 pug ml™).
Cells were then washed three times (5 min each) in washing buffer and
once in 1x PBS for 10 min. Finally, cells were mounted using glucose
oxidase and -mercaptoethylamine (50 mM Tris,10 mM NaCl, pH 8.0,
supplemented with 50 mM 3-mercaptoethylamine, 10% (w/v) glucose,
0.5 mg ml™ glucose oxidase and 40 pg ml™ catalase).

Dataacquisition

HUVEC were imaged using a Marianas spinning-disk confocal micro-
scope equipped with a Yokogawa CSU-W1scanning unitonaninverted
Zeiss Axio Observer Z1 microscope, controlled by SlideBook 6 (Intel-
ligent Imaging Innovations, Inc.) (Fig. 1). Images were acquired using
an Evolve 512 EMC CD camera (chip size, 512 x 512; Photometrics);
the objective used was an M27 x63/1.4 numerical aperture (NA), oil
immersion (Plan-Apochromat). Data acquisition was performed with
a Nanoimager microscope (Oxford Nanoimaging) equipped with
an Olympus x100/1.45 NA oil-immersion objective (Extended Data
Fig. 8). Imaging was performed using 405-, 488- and 640-nm lasers
for Hoechst-33342, AlexaFluor555 and AlexaFluor647 excitation,
respectively. Fluorescence was detected usingasCMOS camera (ORCA
Flash, 16 bit). For channel 0, adichroicfilter with bands 0of498-551and
576-620 nmwas used and, for channel 1,a 665-705-nm dichroicfilter.
Sequential multicolor acquisition was performed for AlexaFluor647,
AlexaFluor555and Hoechst-33342. Using epifluorescence illumination,
a pulse of high laser power (90%) of the 640-nm laser was used, with
10,000 frames immediately acquired. The sample was then excited
with the 488-nm laser (13.7% laser power), with 500 frames acquired,
followed by 405-nm laser excitation (40% laser power) with acquisition

ofafurther 500 frames. For all acquisitions, an exposure time of 10 ms
was used.

Liquid Engine agent

Runtimes of methodsimplementedinNanoPyx through Liquid Engine
are locally stored on the user’s home folder inside a folder titled .liq-
uid_engine. For OpenCL implementations, the agent also storesaniden-
tification of the device and can detect hardware changes. Whenever a
method is run through Liquid Engine, the overseeing agent reads the
50 mostrecentrecorded runtimes. If there are fewer than 50 recorded
runs but more than three, the agent will proceed with the available
recorded runs. However, if there are fewer than three runs recorded,
all Liquid Engine methods will revert to default benchmarks that can
be either supplied with the package or defined by the user. For each
implementation, the agent then divides the available corresponding
run times into two separate sets of equal length, one containing the
fastest runtimes and the other the slowest. We then calculate average
and standard deviation for both sets, namely FastAverage, FastStdDeyv,
SlowAverage and SlowStdDeyv (equations (1-5)). This splitin runtimes
helpsidentify the start or end of a delay. By comparison against the set
of fastest run times, we ensure that previous delayed run times do not
skew normal average runtime. Onthe other hand, the set of slowest run
times, although not guaranteed to be exactly like a delayed run time,
helps us estimate a lower bound to that which a higher-than-average
run time could look like.

Once the method has finished running, the agent checks whether
there wasadelay (Delay). A delayed implementationis defined by hav-
ingitsruntime (Measured Run Time) higher thantherecorded average
run time of the fastest runs, plus four times the standard deviation of
the fastest runs (equation (1)). If a delay is detected (Extended Data
Fig. 6), the agent will also calculate the delay factor (DelayFactor, equa-
tion (2)) and will activate a probabilistic approach that stochastically
selects which method to run.

This is performed using a logistic regression model that calcu-
lates the probability of the delay being present on the next run (Pe,,),
and by adjusting the expected run time of the delayed implementa-
tion (Adjusted Run Time) according to equation (3), while still using
FastAverage for allnondelayed implementations. The agent then picks
whichimplementation to use, based on probabilities assigned to each
implementation (given by Py, 1ime« fOr agivenimplementation k), using
loverthesquare of adjusted runtime and normalized for the run times
of allotherimplementations (equation (4)). This stochasticapproach
ensures that the agent will still run the delayed implementation from
time to time to check whether that delay is still present.

Duringasubsequent run, the agent will evaluate whether thereis
adelay. It will consider the delay as over when the measured run time
iseither (1) lower than the slow average minus the standard deviation
(Std) of the slowest runs, or (2) lower than the fast average plus the
standard deviation of the fastest runs (as per equation (5)). Once the
delay is over, the agent will revert to selecting which implementation
to use based on the fast average of each implementation (as shownin
Extended Data Figs. 6 and 7).

Delay = True if Measured Run Time > (FastAverage + 4 x Std) (1)

Measured Run Time
DelayFaCtOr = W (2)

Adjusted Run Time
3

= FastAverage x (1 - Pdem) + FastAverage x DelayFactor x Pgejay

1 1
Prun Timek = 9 x 4
funmek Run Time? Adjusted Run Time2” @
k

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

Delay = False if (Measured Run Time < (SlowAverage — SlowStdDev))

Vv (Measured Run Time > (FastAverage + FastStdDev))
©)

Benchmarking run times

For laptop benchmarks, a MacBook Air M1 Pro with 16 GB of
random-access memory (RAM) and a 512-GB, solid-state drive (SSD)
was used. For the professional workstation, a custom-made desktop
computer was used containing an Intel i9-13900K, aNVIDIARTX 4090
with 24 GB of dedicated video memory,al TB SSD and 128 GB of DDR5
RAM. The first benchmark performed (Fig.1and Extended Data Fig. 2)
wasafivefold upsampling of the input data, usinga Catmull-Rom" inter-
polator. Benchmarks were performed on three different input images
with shapes of 1 x10 x 10,10 x10 x 10, 10 x 100 x 100, 10 x 300 x 300,
100 %300 x 300 and 500 x 300x300 (time points x height x width). The
second benchmarks (Extended Data Fig. 1) were nonlocal means denois-
ing performed on images of 200 x 200, 500 x 500 and 1,000 x 1,000
pixels using, respectively, 10,100 and 50 as patch distance, with varying
patchsize(5,10,20,50 and100). The third benchmarks (Extended Data
Figs.2-5) were 2D convolutions using akernel of varying size(1,5,9,13,
17,21), where all kernel values are 1, onimages of varying size (100, 500,
1,000, 2,500, 5,000, 7,500, 10,000, 15,000 or 20,000 pixels for both
dimensions). Supplementary Tables1-4 describe ten different hardware
set-ups used for benchmarking three different conditions of 2D con-
volution, Catmull-Rom interpolation and nonlocal means denoising.

Benchmarking delay management

For evaluation of Liquid Engine’s delay management capabilities, we
benchmarked its performance on 2D convolutions and eSRRF recon-
structions under induced delay conditions. The hardware used was
a high-end desktop with an Intel i9-13900K CPU, NVIDIA RTX 4090
GPU, 128-GB DDR5 RAM and 1-TB SSD. For the 2D convolution task,
we applied a 9 x 9 kernel on 6,000 x 6,000-pixel random images. To
simulate a delay, we used a separate Python process that allocated
>24 GB of GPU memory for irrelevant computations, thus overload-
ing the GPU. We executed 400 sequential convolutions, introducing
artificial delay during convolutions101-200, and compared run times
with and without Liquid Engine optimization enabled. Similarly, for
eSRRF, wereconstructedal00 x 100 x 100-pixel random volume with
parameters magnification = 5, radius = 1.5 and sensitivity = 1. Artificial
delay wasinduced onreconstructions 51-100 out of atotal of 200. Run
times were again collected and analyzed with Liquid Engine on and off.
Inbothtasks, Liquid Engine detected abnormal delay during the over-
loaded period based on run time spikes; it then switched its imple-
mentation preference probabilistically to avoid using the delayed
GPU code.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets used in the figures are either listed in Supplementary
Table 8 or are available for download via Zenodo at https://zenodo.
org/record/8318395 (ref. 29). Source dataare provided with this paper.

Code availability

The NanoPyx python library and Jupyter Notebooks can be found in
our Github repository (https://github.com/HenriquesLab/NanoPyx).
TheLiquid Engine Pythonlibrary canbe foundin our GitHub repository
(https://github.com/HenriquesLab/LiquidEngine). The cookiecut-
ter templates can be found in this GitHub repository (https://github.
com/HenriquesLab/LiquidEngineCookieCutter). The napari plugin
implementing all NanoPyx methods canbe foundinaseparate Github
repository (https://github.com/HenriquesLab/napari-NanoPyx).

References

29. Bruno S. et al. NanoPyx - figures’ data. Zenodo https://doi.org/
10.5281/zenod0.8318394 (2023).

30. Pylvanainen, J. W. et al. Fast4DReg - fast registration of 4D
microscopy datasets. J. Cell Sci. 136, jcs260728 (2023).

Acknowledgements

We thank the previous developers of the NanoJ framework,

whose work inspired this study. In addition, we thank L. Royer and

J. Nunez-lglesias for their invaluable feedback and guidance in
preparing our work. R. Henriques, P.M.P. and R.P. acknowledge support
from LS4FUTURE Associated Laboratory (no. LA/P/0087/2020). R.
Henriques, B.M.S. and I.C. acknowledge the support of the Gulbenkian
Foundation (Fundagéo Calouste Gulbenkian); the European Research
Council under the European Union’s Horizon 2020 research and
innovation program (grant agreement no. 101001332); the European
Commission through the Horizon Europe program (AI4LIFE project
with grant agreement no. 101057970-Al4LIFE and RT-SuperES project
with grant agreement no. 101099654-RT-SuperES); the European
Molecular Biology Organization Installation Grant (no. EMBO-
2020-1G-4734); and the Chan Zuckerberg Initiative Visual Proteomics
Grant (no. vpi-0000000044; https://doi.org/10.37921/743590vtudfp).
In addition, A.D.B. acknowledges the FCT 2021.06849.BD fellowship.
R. Henriques and B.M.S. also acknowledge that this project has been
made possible in part by a grant from the Chan Zuckerberg Initiative
DAF, an advised fund of Silicon Valley Community Foundations (Chan
Zuckerberg Initiative Napari Plugin Foundations Grants Cycle2,

no. NP2-0000000085). P.M.P. and R.P. acknowledge support from
Fundagao para a Ciéncia e Tecnologia (Portugal) project grant no.
PTDC/BIA-MIC/2422/2020 and the MOSTMICRO-ITQB R&D Unit (nos.
UIDB/04612/2020 and UIDP/04612/2020). P.M.P. acknowledges
support from La Caixa Junior Leader Fellowship (no. LCF/BQ/
P120/11760012), financed by ‘la Caixa’ Foundation (ID100010434) and
the European Union’s Horizon 2020 research and innovation program
under Marie Sktodowska-Curie grant agreement no. 847648, and

from a Maratona da Saude award. This study was supported by the
Academy of Finland (no. 338537 to G.J.), the Sigrid Juselius Foundation
(to G.J.), the Cancer Society of Finland (Syopajarjestot, to G.J.) and the
Solutions for Health strategic funding to Abo Akademi University (to
G.J.). This research was supported by INFLAMES Flagship Program of
the Academy of Finland (decision no. 337531).

Author contributions

B.M.S., P.M.P,, G.J. and R. Henriques conceived the study in its initial
form. B.M.S., I.C., A.D.B. and R. Henriques developed the NanoPyx
framework, with code contributions from R. Haase and G.J. B.M.S.,
I.C., A.D.B. and R. Henriques designed the Liquid Engine optimization
approach. B.M.S,, I.C. and A.D.B. implemented the Liquid Engine tools.
G.F.,R.P., PM.P. and G.J. provided samples, data, critical feedback,
testing and guidance. B.M.S., I.C., A.D.B., G.F. and G.J. performed
experiments and analysis. B.M.S., PM.P., G.J. and R. Henriques
acquired funding. B.M.S., P.M.P,, R. Haase, G.J. and R. Henriques
supervised the work. B.M.S., I.C., A.D.B., G.J. and R. Henriques wrote
the manuscript, with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-024-02562-6.

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41592-024-02562-6.

Nature Methods

http://www.nature.com/naturemethods
https://zenodo.org/record/8318395
https://zenodo.org/record/8318395
https://github.com/HenriquesLab/NanoPyx
https://github.com/HenriquesLab/LiquidEngine
https://github.com/HenriquesLab/LiquidEngineCookieCutter
https://github.com/HenriquesLab/LiquidEngineCookieCutter
https://github.com/HenriquesLab/napari-NanoPyx
https://doi.org/10.5281/zenodo.8318394
https://doi.org/10.5281/zenodo.8318394
https://doi.org/10.37921/743590vtudfp
https://doi.org/10.1038/s41592-024-02562-6
https://doi.org/10.1038/s41592-024-02562-6

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Correspondence and requests for materials should be addressed to review of this work. Peer reviewer reports are available. Primary Handling
Ricardo Henriques. Editor: Rita Strack, in collaboration with the Nature Methods team.

Peer review information Nature Methods thanks Christian Tischer and Reprints and permissions information is available at

the other, anonymous, reviewer(s) for their contribution to the peer www.nature.com/reprints.

Nature Methods

http://www.nature.com/naturemethods
http://www.nature.com/reprints

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

ll\l(IJ_OM denoising; 1000x1000 image; Patch distance = 50 0 6NLM denoising; 200x200 image; Patch distance = 10
0.5
80
@ - 0.4
= =
F é 0.3
(]
g 40 - %
[—
z $
< 0.2
20 /
0.1
0 ' ' ' ' ' 0.0 -_—
10 20 Patch ;26 40 50 5 10 15 20 25 30 35 40 45 50
Patch Size
I;l(l)_(l)vl denoising; 500x500 image; Patch distance = 100
250 1
200 Runtype
2 —— GPU (Pixel NLM)
S 150 scikit-image (Patch NLM)
(9] .
g —— Threaded (Pixel NLM)
[
2 1001 —— Unthreaded (Patch NLM)
50 A
0 : : : : :
20 40 60 80 100
Patch Size
Extended Data Fig. 1| Run times of non-local means denoising are dependent The patch-wise implementation s virtually independent on the patch size and
on theirimplementation. The fastest run time for non-local means denoising although it sports higher memory costs its computational efficiency makes it an
changes according to the parameters defined. The pixel-wise implementation attractive option for bigger patch sizes.

thrives when both the patch distance and patch size is relatively small.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

A Laptop

Run time ratio between OpenCL and other run types Comparing

run type
OpenCL- 1.00 1.00 1.00 1.00 1.00 1.00 faster
Unthreaded 10.46
Threaded (dynamic) 6.42
& Threaded (static)
2
c
& Threaded (guided)
Threaded (default)
Numba
Python
GPU
& N 0@ N faster
5 5 5 X
N N S ¥
NSRS &
g g &
Input shape (Frames x Height x Width)
Run time ratio between OpenCL and other run types Comparing
run type
OpenCL - 1.00 1.00 1.00 1.00 1.00 1.00 faster
Unthreaded 37.80) 0.54
Threaded (dynamic) - 31.53
& Threaded (static) - 29.66 1.24 I 057
= [}
c
& Threaded (guided) - 25.51
Threaded (default) - 9.39
Numba
Python -
GPU
! N N ! N ! ! ! faster
S N)
o o 2
S ~ S
&> & S
NS

Input shape (Frames x Height x Width)

Extended Data Fig. 2| Ratio between the run times of OpenCL and other
implemented run types. Run times of a 5x Catmull-rom" interpolation were
measured across multiple input data sizes using either aMacBook Air M1

(A), a Professional Workstation (B) or Google Colaboratory (C). Using the fastest

B

Professional Workstation

Run time ratio between OpenCL and other run types Comparing

run type
OpenCL- 1.00 1.00 1.00 100 1.00 1.00 faster
Unthreaded ¥R 56.97 :0.85
Threaded (dynamic) -PAERRNE C1ERCEE 13,42
& Threaded (static) - 35.30 8.11
>
c
& Threaded (guided) DAL cpivll 12,77
Threaded (default) 7.70
Numba - 22EPR8 107.58 9.11
Python - GPU
! ! ! ! ! - faster

SERROEER
> > o
> o ©
N g oV o
& &

Input shape (Frames x Height x Width)

implementation can lead to up to 10x faster code execution. Area within dashed
lines correspond to kernel and image sizes where OpenCL is faster than other
implementations.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

A Laptop B Professional workstation
Ratio between OpenCL and Threaded CPU run times T“(':e;ﬂe" Ratio between OpenCL and Threaded CPU run times T“(’:e:l‘jed
g faster 0.04- 56.9 3859 2965 faster
o
o 1.0
=
a o P, 4.0
=7 =
3o g 250-
w R @
%o % 100.0 -
ES E
g T 225.0-
2o A
=y <
R 400.0 -
o
o
g 900.0 -
o
S 1600.0 -
3 GPU GPU
faster faster
9 13 9 13
Kernel size (Size x Size) Kernel size (Size x Size)

Extended DataFig. 3 | Ratio between the run times of a 2D convolution. Run times were measured across multiple input data sizes and kernel sizes using either a
MacBook Air M1 (A) or a Professional Workstation (B). Areas within dashed lines correspond to kernel and image sizes where OpenCL is faster than threaded CPU.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

A

Laptop

Run times of a 2D convolution with kernel size 21x21

120+ Cython unthreaded
—=- Cython threaded
100 ™ Cython threaded static
----- Cython threaded guided
—— Cython threaded dynamic
0] — pyOpenCL
_ —— Numba
< —— Transonic
s
E 604 Dask
<
S
<
401
| //
0
0 200 400 600 800
Input Image Size (MB)
35 Run times of a 2D convolution with kernel size 21x21
Cython unthreaded
Cython threaded
Cython threaded static
-+ Cython threaded guided
Cython threaded dynamic
pyOpenCL
. Numba
\3 204 — Transonic
o —— Dask
E as|
S 15+
&
10+
54
0 7 T o T v T T
0 50 100 150 200 250 300 350 400

Input Image Size (MB)

Extended Data Fig. 4| Run time of eachimplementationis dependent on the
shape of input data. A 2D convolution was performed onimages with increasing
size using either aMacBook Air M1 Pro (A) or a professional workstation (B). A 21
by 21kernel was used for the laptop and a 5x5 for the workstation. The run times

Professional workstation

Run times of a 2D convolution with kernel size 5x5

124
Cython unthreaded
—=- Cython threaded
104 == Cython threaded static
----- Cython threaded guided
—— Cython threaded dynamic
g4 — pyOpenCL
_ —— Numba
z Cupy
g6 Transonic
= —— Dask
c
S
&
44
] /
04
0 200 400 600 800 1000 1200 1400 1600
Input Image Size (MB)
30 Run times of a 2D convolution with kernel size 5x5
Cython unthreaded
Cython threaded
Cython threaded static
Cython threaded guided
Cython threaded dynamic
pyOpenCL
. Numba
\3 Cupy
GE) 15 —— Transonic
k= —— Dask
c
S
&
1.0
s
051 -“”__‘_____‘_...-..-.-..-
0.0 T T T T T T T
0 100 200 300 400 500 600 700 800

Input Image Size (MB)

of eachimplementation vary according to the size of the input image. Bottom
panels correspond to zoomed in windows of top panels, indicated by dotted

boxes.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

A

Laptop

Run times of a 2D convolution with input image size of 500x500

Cython unthreaded
Cython threaded
Cython threaded static
Cython threaded guided
Cython threaded dynamic
—— pyOpenCL
_ —— Numba
% 0.084 Transonic
g —— Dask
= 0.06
5
4
0.04
0.02 T T
e kil
0001 e mmmmmm T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Kernel Size (Size x Size)
0,030 Run times of a 2D convolution with input image size of 500x500
Cython unthreaded
=== Cython threaded
0.025 4 Cython threaded static
- Cython threaded guided
Cython threaded dynamic
00204 — pyOpenCL
. —— Numba
< Transonic
s
o —— Dask
£ 0.015 4 as
<
5
4
0.010 -
0.005
=m=n=tTEE
so=o=o=oEET
0.000 =72 , . , : : :
2 4 6 8 10 12 14

Extended Data Fig. 5| Kernel size impacts whichimplementation is the fastest.

Kernel Size (Size x Size)

A 2D convolution was performed on images with varying kernel sizes, ranging
from1to 21 (every 4) using either aMacBook Air M1 Pro on a 500x500 image
(A) or a professional workstation on 2500x2500 image (B). While unthreaded is

B Professional workstation
Run times of a 2D convolution with input image size of 2500x2500
Cython unthreaded
Cython threaded
Cython threaded static
- Cython threaded guided
=== Cython threaded dynamic
—— pyOpenCL
_ 159 — nNumba
2 Cupy
14 —— Transonic
'g —— Dask
c 1.04
2
0.59
s e s i
00] e
0.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Kernel Size (Size x Size)
0.40 Run times of a 2D convolution with input image size of 2500x2500
Cython unthreaded
0.35 1 Cython threaded
Cython threaded static
Cython threaded guided
0.30+ Cython threaded dynamic
—— pyOpenCL
—— Numba
Cupy
—— Transonic
—— Dask

Run times (s)
o o o o
= = N N
5] @ 5] a

8 10 12 14 16 18
Kernel Size (Size x Size)

virtually always the slowest implementation, the threaded implementations are
only the fastest for small kernel sizes, after which a GPU-based implementation
becomes the fastest. Bottom panels correspond to zoomed in windows of top
panels, indicated by dotted boxes.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

/" Delay \ ON

Adjust sziﬁlig:d Assign Choose
5 . S
state? run times fastest? probabilities Run Type
Eq.3 Eq. 4
OFF
Choose Run
Fastest Fastest
RUN
Store
run time
Eq.5
ON Delay YES [set delay state
over? to OFF
wo L
Eq.2 END
Set delay Calculate delay factor
state to ON and delay probability
END
END

Extended DataFig. 6 | Schematic of the Agent decision making for delay
management. The agent identifies delays when animplementation’s run time
exceeds the fastest average plus four standard deviations (Equation 1). Upon
detection, it calculates a delay factor (Equation 2) and uses a probabilistic
approachwith Logistic Regression to adjust run times (Equation 3) and

selectimplementations stochastically (Equation 4). This ensures delayed
implementations are periodically testes while favoring faster alternatives.
Adelayis considered resolved when the run time falls below thresholds defined

in Equation 5, after which the agent reverts to selecting implementations based
on their fast average run times.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

A 2D Convolution

1.8x faster

=3 Liquid
1 Non-Liquid

—

implementation runs
o
o
X

| I

0 0.2 0.4 0.6 0?8 1.0 1.2
Time (s)
i i
3 | |
| 1
° ® “ r # R | *
k »
Device injury
B 1.‘5:)(_fgster eSRRF
[Liquid
1 Non-Liquid

implementation runs

10 12
i i
i | |
1 1
° ° | #Run | s
-
:l OpenCL Device injury
[_1 Cython Threaded
Extended Data Fig. 7| Example of delay management by the Liquid engine. implementation. An artificial delay was induced by overloading the GPU with
Multiple two-dimensional convolutions (A) and eSRRF analysis (B) were run superfluous calculations in a separate Python interpreter. Dashed lines represent

sequentially in a professional workstation. Starting from two initial benchmarks, averageruntimes.
the Agent is responsible for informing the Liquid Engine on the best probable

Nature Methods

http://www.nature.com/naturemethods

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

e 4

Microtubules

/" Input Dataset

frame

N\

Time OJection

Drift Aligned)

Time projection

/eSRRF Reconstruction)

Image Registration /

_ Super-Resqutionj

éourier Ring Correlation Decorrelation Analysis

SN

Resolution: 89.6nm
1.0
0.8
O
o6
L 0.4
0.2
0.0 LA
\’\/
0.000 0.005 0.010 0.015
Spatial frequency (1/nm)

Error Map

RSP:0.901
RSE: 85.795| -

Resolution: 86.4nm
c
T 2
(@]
20
© © o2
(@]
0.0
00 02 04 06 08 1.0
Normalized frequency

Quality Control /

S

\&

Extended Data Fig. 8 | Microscopy image processing workflow using NanoPyx
methods. Through NanoPyx, users can correct drift, generate a super-resolved
image using eSRRF?, assess the quality of the generated image using Fourier

Ring Correlation (FRC)*, Image Decorrelation Analysis®,

and Nano)-SQUIRREL*

metrics. NanoPyx methods are made available as a Python library, Jupyter
Notebooks that canbe runlocally or through Google Colaboratory,
and as a napari plugin. Scale bars, 10 pm.

Nature Methods

http://www.nature.com/naturemethods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Composite 3 Colour Image

Before
Channel Registration

Channel 1 Channel 2 Channel 3

S

Channel
Registration

Channel
Registration

After
Channel Registration

Composite 3 Colour Image

Extended Data Fig. 9| Example channel registration of a calibration slide. NanoPyx allows users to perform channel registration based on the Nano)*
implementation. Example data of calibration slide obtained from the freely available data in the Fast4DReg*° publication.

Nature Methods

http://www.nature.com/naturemethods

nature portfolio

Corresponding author(s): Ricardo Henriques

Last updated by author(s): Oct 10, 2024

Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested

XX X XX s

X
O o 0Oodgodgd

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Images were collected as indicated in the material and methods. All the instruments used are commercially available and were controlled
using the software provided by the manufacturer.

Data analysis Images used in the manuscript were processed with NanoPyx 0.6.1, Napari 0.4.19 or Fiji 1.54f as indicated.
NanoPyx is can be accessed from our GitHub page https://github.com/HenriquesLab/NanoPyx. The Liquid Engine is available through its
github repository page https://github.com/HenriquesLab/LiquidEngine/. These resources are fully open-source, providing users with tutorials,
Jupyter Notebooks for Google Colab and many real-life example datasets for training and testing.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q)
—
c
D)
§O)
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
[
3
3
Q
=
2

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The example datasets we use to showcase NanoPyx are available for download in Zenodo (links provided in Supplementary Table S1 and our GitHub page).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

>
Q
—
c
)
o)
le)
=
o
=
—
)
o)
o)
=
>
Q@
wv
[
3
3
Q
=
2

Reporting on sex and gender N/A

Population characteristics N/A
Recruitment N/A
Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We have used 2 biological datasets, described in the data availability section, and images simulated on the fly, available in the jupyter
notebooks described in the code availability section, to generate the benchmarks of different methods

Data exclusions No data was excluded
Replication As images were only used as examples of the type of image that can be run in the methods no replication was needed.
Randomization | Asimages were only used as examples of the type of image that can be run in the methods no randomization was needed.

Blinding As images were only used as examples of the type of image that can be run in the methods no blinding was needed.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

|:| Antibodies |:| ChIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

[] Palaeontology and archaeology X[] MRi-based neuroimaging

|:| Animals and other organisms

X
g |:| Clinical data

|Z |:| Dual use research of concern

Antibodies

Antibodies used Anti-a-Tubulin antibody, Mouse monoclonal, clone DM1A (Sigma, Catalog #76199) (1:250); Anti-Tubulin-a Antibody, Mouse
monoclonal, clone 10D8 (BioLegend, Catalog #625901) (1:500); Anti-Human Septin 7 1gG, Rabbit Polyclonal, (IBL, Catalog # JP18991)
(1:100); Anti-Tubulin Beta 3 (TUBB3), Mouse monoclonal, clone AA10 (BioLegend, Catalog#657401) (1:500); Conjungated F(ab')2-
Goat anti-Mouse 1gG — Alexa Fluor 647 (ThermoFisher, Catalog #A-21237) (1:200); Conjugated Goat anti-Rabbit IgG - Alexa Fluor™
555 (ThermoFisher Catalog #A-21428) (1:200).

>
Q)
—
c
D)
o)
o)
=
o
=
_
D)
©
o)
=
S
Q@
wv
[
3
3
Q
=
2

Validation Anti-a-Tubulin antibody (Catalog #T6199). Isotype: I1gG1. Verified reactivity (VR): yeast, mouse, amphibian, human, rat, chicken, fungi,
bovine. Antibody Type (AT): Monoclonal. Host species: Mouse. Concentration 1mg/ml. Application in immunoblotting,
immunocytochemistry, immunofluorescence radioimmunoassay and western blot. Independent enhanced validation: antibody
specificity demonstrated using multiple antibodies against target in immunohistochemistry or immunocytochemistry.

Anti-Tubulin-a Antibody (Catalog #625901). Isotype: Mouse 1gM, k. VR: Human, mouse, rat and all species. AT: monoclonal. Host
species: Mouse. Concentration 0.5mg/ml. Application in western blotting (quality tested), immunohistochemistry — Paraffin and
immunocytochemistry.

Anti-Human Septin 7 1gG (IBL, Catalog #JP18991). Isotype: I1gG. VR: Human, mouse and rat. AT: Polyclonal. Host species: Rabbit.
Concentration 0.1mg/ml. Application in western blotting, immunohistochemistry and immunoprecipitation.

Anti-Tubulin Beta 3 (TUBB3) (BioLegend, Catalog #657401). Isotype: Mouse IgG2a. VR: Mouse, Rat, Human. AT: Monoclonal. Host
species: mouse. Concentration: 0.5mg/ml. Application in western blotting (quality tested), immunocytochemistry (verified), flow
cytometry, immunofluorescence microscopy and spatial biology (IBEX). Knock-out validated.

Conjugated F(ab')2-goat anti-mouse IgG — Alexa Fluor 647 (ThermoFisher, Catalog #A-21237). Isotype: IgG. VR: Mouse. AT: Polyclonal.
Host species: Goat/lgG. Concentration 2mg/ml. Application in western blotting, immunohistochemistry and immunocytochemistry.
Cross adsorbed: against human IgG and serum.

Conjugated Full antibody-Goat anti-Rabbit 1gG - Alexa Fluor 555 (ThermoFisher Catalog #A-21428); Isotype: IgG. VR: Rabbit. AT:
Polyclonal. Host species: Goat/IgG. Concentration: 2mg/ml. Application in immunohistochemistry, immunocytochemistry and flow
cytometry. Cross adsorbed: against human IgG, human serum, mouse IgG, mouse serum and bovine serum.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) A549 cell line (The European Coollection of Authenticated Cell Cultures (from ECACC Catalog # 86012804); Human Umbilical
Vein Endothelial Cells (HUVEC) (from PromoCell C-12203)

Authentication Cell lines were not authenticated

Mycoplasma contamination Cells lines used tested negative for Mycoplasma contamination

Commonly misidentified lines None
(See ICLAC register)

	Efficiently accelerated bioimage analysis with NanoPyx, a Liquid Engine-powered Python framework

	Online content

	Fig. 1 Comparative run times of multiple implementations of an algorithm, run on a consumer-grade laptop and a professional workstation.
	Fig. 2 NanoPyx achieves optimal performance by exploiting Liquid Engine’s self-optimization capabilities.
	Extended Data Fig. 1 Run times of non-local means denoising are dependent on their implementation.
	Extended Data Fig. 2 Ratio between the run times of OpenCL and other implemented run types.
	Extended Data Fig. 3 Ratio between the run times of a 2D convolution.
	Extended Data Fig. 4 Run time of each implementation is dependent on the shape of input data.
	Extended Data Fig. 5 Kernel size impacts which implementation is the fastest.
	Extended Data Fig. 6 Schematic of the Agent decision making for delay management.
	Extended Data Fig. 7 Example of delay management by the Liquid engine.
	Extended Data Fig. 8 Microscopy image processing workflow using NanoPyx methods.
	Extended Data Fig. 9 Example channel registration of a calibration slide.

