
Nature Methods

nature methods

https://doi.org/10.1038/s41592-024-02562-6Brief Communication

Efficiently accelerated bioimage analysis
with NanoPyx, a Liquid Engine-powered
Python framework

Bruno M. Saraiva1,2,12, Inês Cunha1,3,4,12, António D. Brito   1,5,12, Gautier Follain   6,
Raquel Portela5, Robert Haase   7, Pedro M. Pereira   5,
Guillaume Jacquemet   6,8,9,10 & Ricardo Henriques   1,2,5,11

The expanding scale and complexity of microscopy image datasets require
accelerated analytical workflows. NanoPyx meets this need through an
adaptive framework enhanced for high-speed analysis. At the core of
NanoPyx, the Liquid Engine dynamically generates optimized central
processing unit and graphics processing unit code variations, learning and
predicting the fastest based on input data and hardware. This data-driven
optimization achieves considerably faster processing, becoming broadly
relevant to reactive microscopy and computing fields requiring efficiency.

Super-resolution microscopy has revolutionized cell biology by ena-
bling fluorescence imaging at an unprecedented resolution1–4. However,
data collected from these experiments often require specific analytical
procedures, such as image registration, resolution enhancement and
quantification of data quality and resolution. Many of these procedures
use open-source image analysis software, particularly ImageJ5/FIJI6 or
napari7. The computational performance of each of these tools bears
notable implications for processing time, which becomes especially
salient given the increasing need for high-performance computing in
bioimaging analysis. In this work we present NanoPyx, a Python frame-
work for microscopy image analysis that exploits the Liquid Engine to
massively accelerate analysis workflows.

With the increasing use of deep learning, many bioimaging analy-
sis pipelines are now being developed in Python. Pure Python code
often runs on a single central processing unit (CPU) core, impact-
ing the performance and speed of Python frameworks. Alternative
solutions, such as Cython8, PyOpenCL9 and Numba10, allow CPU and
graphics processing unit (GPU) parallelization, which can reduce
run times (Supplementary Note 1). However, identifying the swiftest
implementation depends on the hardware, input data and parameters.

Figure 1 illustrates a case where denoising the larger image with a nonlo-
cal means (NLM) algorithm11,12 is approximately two times faster when
using a CPU unthreaded strategy than a pixel-wise threaded imple-
mentation strategy on a GPU in a professional workstation (Fig. 1c and
Supplementary Note 2). Notably, the same algorithm cannot be run on
the testing laptop’s GPU with the same parameters due to architecture
limitations (Fig. 1b). This means that certain acceleration strategies
have hardware constraints and require a different approach. How-
ever, for other conditions (condition 2 on workstation and laptop and
condition 3 on laptop), GPU-based processing is a faster alternative
for the same NLM algorithm. Extended Data Figs. 1–5 further support
these observations, by illustrating run times for various implementa-
tions across distinct datasets and parameters on contrasting hardware
set-ups. Another example is Catmull–Rom13 interpolations parallelized
in a pixel-wise manner (Extended Data Fig. 2), in which choosing an
OpenCL14 implementation for lower-sized images could escalate run
time by several orders of magnitude compared with parallelized CPU
processing. Similarly, threaded CPU processing for larger-sized images
performed up to 30 times more slowly than GPU processing on profes-
sional workstations. Supplementary Tables 1–4 present benchmarks

Received: 5 September 2023

Accepted: 7 November 2024

Published online: xx xx xxxx

 Check for updates

1Instituto Gulbenkian de Ciência, Oeiras, Portugal. 2Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal. 3Instituto Superior Técnico, Lisbon,
Portugal. 4Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. 5Instituto de Tecnologia
Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. 6Turku Bioscience Centre, University of Turku and Åbo Akademi
University, Turku, Finland. 7DFG Cluster of Excellence “Physics of Life”, TU Dresden, Dresden, Germany. 8Turku Bioimaging, University of Turku and Åbo
Akademi University, Turku, Finland. 9Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland. 10InFLAMES Research
Flagship Center, Åbo Akademi University, Turku, Finland. 11UCL-Laboratory for Molecular Cell Biology, University College London, London, UK.
12These authors contributed equally: Bruno M. Saraiva, Inês Cunha, António D. Brito.  e-mail: r.henriques@itqb.unl.pt

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02562-6
http://orcid.org/0009-0001-1769-2627
http://orcid.org/0000-0003-0495-9529
http://orcid.org/0000-0001-5949-2327
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-9286-920X
http://orcid.org/0000-0002-2043-5234
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02562-6&domain=pdf
mailto:r.henriques@itqb.unl.pt

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

execution time (Supplementary Table 5). This system enables NanoPyx
to make instant decisions based on an initially limited set of records,
progressively improving its performance as further data are obtained.

Each time a workflow is scheduled to run, a supervisor agent is
responsible for selecting the best implementation based on previous run
times; this selection is made without imposing any substantial overhead
(Supplementary Table 5). When users do not trigger manual benchmark-
ing, the agent uses ‘factory-default’ benchmarks until sufficient run times
have been recorded on the user’s hardware. The agent constantly moni-
tors the run times of all available methods, and can adapt to unexpected
delays by ensuring that the optimal implementation is selected. In the case
where a severe delay is detected, the agent predicts whether the optimal
implementation has changed and calculates the likelihood of that delay
being repeated in the future (Extended Data Fig. 6). Over the course of

across ten different hardware set-ups, highlighting the limitations of
relying on a single implementation, because it may not universally offer
the fastest performance.

Here we introduce NanoPyx, a high-performance bioimaging
analysis framework exploiting the Liquid Engine. It uses multiple varia-
tions (here called implementations; Supplementary Note 3) of the same
algorithm to perform a specific task. These variations include multiple
acceleration strategies, including PyOpenCL9, CUDA15 (using CuPy16),
Cython8, Numba10, Transonic17 and Dask18 (Extended Data Figs. 1–5).
Although these implementations provide numerically identical outputs
for the same input, their computational performance differs by exploit-
ing different computational strategies. The Liquid Engine features three
main components: (1) metaprogramming tools for multihardware imple-
mentation (using Mako templates19 and a custom script, named c2cl;
Supplementary Note 4); (2) an automatic benchmarking system; and
(3) a supervisor machine learning-based agent that determines the ideal
combination of implementations to maximize performance (Fig. 2).

Liquid Engine uses a machine learning system (Supplementary
Note 5) to predict the optimal combination of implementations
while including device-dependent performance variations (Fig. 1 and
Extended Data Figs. 1–5). When a user does not have access to one of
the implementations, Liquid Engine ignores it, guaranteeing that the
user will always be able to process their images. Dynamic benchmarking
substantially enhances computational speed for tasks involving input
data of varying size. This technique predicts when to switch between
different algorithmic implementations, resulting in up to 24-fold faster
processing compared with use of the pixel-wise parallelization strat-
egy (CPU threaded; Fig. 2). Even when compared with running both
methods on a GPU, performing dynamic implementation selection still
provides 1.75-fold acceleration (Supplementary Table 5).

Liquid Engine maintains a historic record of run times for each imple-
mentation. Manual benchmarking can be initiated by the user, prompt-
ing Liquid Engine to profile the execution of each implementation and
identify the fastest (Supplementary Table 5). The system uses fuzzy logic20
(Supplementary Note 6) to identify the benchmarked example with the
most similar input properties, utilizing it as a baseline for the expected

8.754 s 0.024 s

0.068 s

0.068 s

0.114 s

0.062 s

0.062 s

64.78 s

1,015 s

1,019 s

990.0 s

990.5 s

32.33 s

29.98 s

30.03 s

32.28 s

89.22 s

Implementation

Runtime on laptop Runtime on workstation
Condition Condition Condition

1 2 3
Condition

Hardware
limitation

Condition Condition
1 2 3

GPU

CPU threaded

CPU T. dynamic

CPU T. guided

CPU T. static

CPU unthreaded

1 1 1
2 2 …

1 1 2
2 3 …

1 2 1
2 3 …

1 2 1
2 3 …

1 2 3
1 2 …

1 2 3
1 2 …

Condition 1a

1,000

1,000
Benchmarked task:
nonlocal
means image
denoising

Fast
d = 50

Patch size = 50

Condition 2
d = 100

Patch
size = 5

500

500

Dimensions in pixels

Condition 3

200

200
Patch

size = 5

d = 10

Slow

1 1 1
2 2 …

1 1 2
2 3 …

51.92 s 0.481 s 0.070 s

0.031 s

0.024 s

0.026 s

0.032 s

0.052 s

12.04 s

11.68 s

11.66 s

12.41 s

37.61 s

748.0 s

648.2 s

646.7 s

740.2 s

27.84 s

b c

Fig. 1 | Comparative run times of multiple implementations of an algorithm,
run on a consumer-grade laptop and a professional workstation. a–c, The
fastest implementation (Supplementary Note 3) depends on various factors such
as the shape of the input data, method-specific parameters and the user device.
a, Nonlocal mean denoising is performed on images of varying shape using a
collection of patch sizes and distances (d). b, Run times of various conditions
when performing analysis on a consumer-grade laptop; condition 1 could not
be run on the GPU due to hardware limitations. T. dynamic, threaded dynamic;
T. guided, threaded guided; T. static, threaded static. c, On a professional
workstation, faster implementation changes with each condition, illustrating
how it is affected by the input data and method-specific parameters.

…

G P UC P UC P UC P U

OutputInput

…

Task 1a

b

…

Task 2

…

Task n…

Data dimensions

RecordAgent Run time

Fastest path

Fastest path

1 1 1
2 2 …

1 1 2
2 3 …

Implementation
Task 1

Denoising
Task 2
eSRRF

Run time in workstation

Work�ow
run time

Liquid Engine

CPU threaded

GPU

+ =

CPU unthreaded

1 1 1
2 2 …

51.94 s

725.3 s

29.55 s

0.209 s

3.906 s

49.54 s

52.15 s

29.76 s

729.69 s

79.10 s

Fig. 2 | NanoPyx achieves optimal performance by exploiting Liquid Engine’s
self-optimization capabilities. a, NanoPyx is built on top of the Liquid Engine,
which automatically benchmarks implementations of all tasks in a specific
workflow. Liquid Engine retains a historical record of the run times of each task
and input used, allowing a machine learning-based agent to select the fastest
combination of implementations. b, Liquid Engine dynamically chooses the
fastest implementation for each method, based on its input parameters. For
a workflow performing denoising on a 1,000 × 1,000 image, using NLM11,12
(patch distance 50 pixels, patch size 50 pixels, sigma 1.0 and cut-off distance
(h) 0.1), followed by super-resolution of the data with eSRRF21 (magnification ×5,
radius 1.5, sensitivity 1 and using intensity weighting), Liquid Engine selects the
fastest combination of implementations to substantially reduce run times.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

several sequential runs of the same method, we show that delay manage-
ment improved average run time by a factor of 1.8 for a two-dimensional
(2D) convolution and by 1.5 for an established super-resolution radial
fluctuations (eSRRF)21 analysis (Extended Data Fig. 7).

NanoPyx enhances and expands the super-resolution analysis
methods previously included in the NanoJ21–24 plugin family, and intro-
duces additional bioimage analysis techniques, including example
testing datasets (Supplementary Note 7). Extended Data Fig. 8 illus-
trates an example workflow where NanoPyx starts by performing drift
correction. NanoPyx then allows super-resolution reconstructions
using SRRF23 or its improved version, eSRRF21. Next, quality assessment
is performed by running Fourier ring correlation25 and decorrelation
analysis26, and by calculating a SQUIRREL error map24. Besides the
aforementioned methods, NanoPyx also includes channel registration
(Extended Data Fig. 9), multiple interpolators, 2D convolution, denois-
ing through NLM11,12 and several other bioimage analysis methods
(Supplementary Table 6). Although not all of these methods exploit the
advantages of Liquid Engine (Supplementary Table 6), we are actively
developing new parallelization strategies for the remaining methods.

NanoPyx is accessible as a Python library, which can be installed via
either Python package index or our GitHub repository (Supplementary
Table 5). Liquid Engine is also available as a standalone Python package
that is readily integrated in other projects. Alongside these Python
libraries, we provide cookiecutter (https://cookiecutter.readthedocs.
io) template files to help developers implement their own methods
using Liquid Engine (Supplementary Note 8). Secondly, we provide
Jupyter notebooks27 (Supplementary Fig. 1a and Supplementary
Table 5). Users of these notebooks are not required to interact with
any code directly, because a graphical user interface is generated28.
Lastly, we developed a plugin for napari7, a Python image viewer (Sup-
plementary Fig. 1b). By offering these three distinct user interfaces,
we ensure that NanoPyx can be readily utilized by users irrespective
of their coding proficiency level. In NanoPyx’s repository, we have
provided usage guidelines for end-users along with several tutorials,
including videos (Supplementary Table 7), on how to run NanoPyx
through any of its interfaces, and how to implement their own methods
exploiting optimization of Liquid Engine (Supplementary Note 8).

Looking ahead, a priority for NanoPyx is expanding support for
emerging techniques such as artificial intelligence-assisted imag-
ing and smart microscopes. Because these methods involve pro-
cessing data in real time during acquisition, NanoPyx’s accelerated
performance becomes critical. In addition, we aim to incorporate
more diverse processing workflows beyond currently implemented
methods.

Cumulatively, NanoPyx delivers adaptive performance optimiza-
tion to accelerate bioimage analysis while retaining modular design
and easy adoption. This flexible framework is important and timely,
given the expanding volumes of microscopy data and the need for
data-driven reactive microscopy. The optimization principles embod-
ied in its Liquid Engine can be extended to other scientific workloads
requiring high computational efficiency. As data scales expand, Nan-
oPyx offers researchers an actively improving platform to execute
demanding microscopy workflows.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-024-02562-6.

References
1. Rust, M. J., Bates, M. & Zhuang, X. Stochastic optical

reconstruction microscopy (STORM) provides sub-diffraction-
limit image resolution. Nat. Methods 3, 793–795 (2006).

2. Bates, M., Huang, B. & Zhuang, X. Super-resolution microscopy by
nanoscale localization of photo-switchable fluorescent probes.
Curr. Opin. Chem. Biol. 12, 505–514 (2008).

3. Hell, S. W. & Wichmann, J. Breaking the diffraction
resolution limit by stimulated emission: stimulated-emission-
depletion fluorescence microscopy. Opt. Lett. 19, 780–782
(1994).

4. Guerra, J. M. Super‐resolution through illumination by
diffraction‐born evanescent waves. Appl. Phys. Lett. 66,
3555–3557 (1995).

5. Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The
ImageJ ecosystem: an open platform for biomedical image
analysis. Mol. Reprod. Dev. 82, 518–529 (2015).

6. Schindelin, J. et al. Fiji: an open-source platform for
biological-image analysis. Nat. Methods 9, 676–682 (2012).

7. Sofroniew, N. et al. napari: A multi-dimensional image viewer
for Python. Zenodo https://doi.org/10.5281/zenodo.7276432
(2022).

8. Behnel, S. et al. Cython: the best of both worlds. Comput. Sci.
Eng. 13, 31–39 (2011).

9. Kloeckner, A. et al. PyOpenCL. Zenodo https://doi.org/10.5281/
zenodo.7063192 (2022).

10. Lam, S. K., Pitrou, A. & Seibert, S. Numba: a LLVM-based Python
JIT compiler. In Proc. Second Workshop on the LLVM Compiler
Infrastructure in HPC 1–6 (ACM, 2015);
https://doi.org/10.1145/2833157.2833162

11. Buades, A., Coll, B. & Morel, J.-M. Non-local means denoising.
Image Process. Line 1, 208–212 (2011).

12. Darbon, J., Cunha, A., Chan, T. F., Osher, S. & Jensen, G. J. Fast
nonlocal filtering applied to electron cryomicroscopy. In Proc.
5th IEEE International Symposium on Biomedical Imaging:
From Nano to Macro 1331–1334 (2008); https://doi.org/10.1109/
ISBI.2008.4541250

13. Catmull, E. & Rom, R. A class of local interpolating splines.
in Computer Aided Geometric Design (eds Barnhill, R. E. &
Riesenfeld, R. F.) 317–326 (Academic Press, 1974); https://doi.org/
10.1016/B978-0-12-079050-0.50020-5

14. Stone, J. E., Gohara, D. & Shi, G. OpenCL: a parallel programming
standard for heterogeneous computing systems. Comput. Sci.
Eng. 12, 66–73 (2010).

15. CUDA Toolkit - Free Tools and Training. NVIDIA Developer
https://developer.nvidia.com/cuda-toolkit

16. Okuta, R., Unno, Y., Nishino, D., Hido, S. & Loomis, C. CuPy:
A NumPy-compatible library for NVIDIA GPU calculations. In Proc.
Workshop on Machine Learning Systems (LearningSys) in The
Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS) (2017).

17. fluiddyn/transonic Make your Python code fly at transonic
speeds! GitHub https://github.com/fluiddyn/transonic
(2019).

18. Rocklin, M. Dask: parallel computation with blocked algorithms
and task scheduling. In SciPy Proc. 126–132 (2015); https://doi.org/
10.25080/Majora-7b98e3ed-013

19. Bayer, M. Mako: templates for Python. BibSonomy www.
bibsonomy.org/bibtex/aa47d818a1c2f889b7456117003b3d42
(2012).

20. Novak, V., Perfiljeva, I. & Mockor, J. Mathematical Principles of
Fuzzy Logic (Springer, 1999); https://doi.org/10.1007/978-1-4615-
5217-8

21. Laine, R. F. et al. High-fidelity 3D live-cell nanoscopy through
data-driven enhanced super-resolution radial fluctuation.
Nat. Methods 20, 1949–1956 (2023).

22. Laine, R. F. et al. NanoJ: a high-performance open-source
super-resolution microscopy toolbox. J. Phys. Appl. Phys. 52,
163001 (2019).

http://www.nature.com/naturemethods
https://cookiecutter.readthedocs.io
https://cookiecutter.readthedocs.io
https://doi.org/10.1038/s41592-024-02562-6
https://doi.org/10.5281/zenodo.7276432
https://doi.org/10.5281/zenodo.7063192
https://doi.org/10.5281/zenodo.7063192
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1145/2833157.2833162
https://doi.org/10.1109/ISBI.2008.4541250
https://doi.org/10.1109/ISBI.2008.4541250
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://doi.org/10.1016/B978-0-12-079050-0.50020-5
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://github.com/fluiddyn/transonic
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
http://www.bibsonomy.org/bibtex/aa47d818a1c2f889b7456117003b3d42
http://www.bibsonomy.org/bibtex/aa47d818a1c2f889b7456117003b3d42
https://doi.org/10.1007/978-1-4615-5217-8
https://doi.org/10.1007/978-1-4615-5217-8

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

23. Gustafsson, N. et al. Fast live-cell conventional fluorophore
nanoscopy with ImageJ through super-resolution radial
fluctuations. Nat. Commun. 7, 12471 (2016).

24. Culley, S. et al. Quantitative mapping and minimization of
super-resolution optical imaging artifacts. Nat. Methods 15,
263–266 (2018).

25. Nieuwenhuizen, R. P. J. et al. Measuring image resolution in
optical nanoscopy. Nat. Methods 10, 557–562 (2013).

26. Descloux, A., Grußmayer, K. S. & Radenovic, A. Parameter-free
image resolution estimation based on decorrelation analysis.
Nat. Methods 16, 918–924 (2019).

27. Kluyver, T. et al. Jupyter Notebooks – a publishing format for
reproducible computational workflows. In Positioning and Power
in Academic Publishing: Players 87–90 (IOS Press, 2016);
https://doi.org/10.3233/978-1-61499-649-1-87

28. Haase, R., Bragantini, J. & Amsalem, O. haesleinhuepf/stack
view: 0.6.2. Zenodo https://doi.org/10.5281/zenodo.7847336
(2023).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2025

http://www.nature.com/naturemethods
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.5281/zenodo.7847336
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Methods
Mammalian cell culture
Human umbilical vein endothelial cells (HUVEC) (PromoCell, cata-
log no. C-12203) were grown in endothelial cell growth medium
(PromoCell, catalog no. C-22010), with a supplementary mix ((Pro-
mocell, catalog no. C-39215) and 1% penicillin/streptomycin (Sigma);
Fig. 1). Endothelial primary cells from P0 (commercial vial) were
expanded to a P3 stock frozen at −80 °C to standardize the experi-
mental replicates. A549 cells (The European Collection of Authenti-
cated Cell Cultures) were cultured in phenol red-free, high-glucose,
l-glutamine containing DMEM (Thermo Fisher Scientific), supple-
mented with 10% (v/v) fetal bovine serum (Sigma) and 1% (v/v) penicil-
lin/streptomycin (Thermo Fisher Scientific), at 37 °C in an incubator
with 5% CO2 (Extended Data Fig. 8).

Sample preparation for microscopy
HUVEC were seeded in an eight-well, glass-bottom µ-slide (Ibidi, cata-
log no. 80807) precoated with warm endothelial cell growth medium
without antibiotics (50,000 cells per well). Cells were then grown for
48 h, fixed with prewarmed 4% paraformaldehyde in PBS (Thermo
Fisher Scientific, catalog no. 28908) for 10 min at 37 °C and stained
with DAPI. A549 cells were seeded on an eight-well, glass-bottom µ-slide
(ibidi) at density 0.05–0.10 × 106 cells cm−2. Following 24 h incubation
at 37 °C and under 5% CO2, cells were washed once with PBS and fixed
for 20 min at 23 °C in 4% paraformaldehyde in PBS. Following fixation,
cells were washed three times in PBS (5 min each), quenched for 10 min
in a solution of 300 mM glycine (in PBS) and permeabilized using a
solution of 0.2% Triton-X (in PBS) for 20 min at 23 °C. Following three
washes (5 min each) in washing buffer (0.05% Tween-20 in PBS), cells
were blocked for 30 min in blocking buffer (5% BSA and 0.05% Tween-
20 in PBS). Samples were then incubated with a mix of anti-α-tubulin
antibodies (1 µg ml−1 clone DM1A (Sigma), 2 µg ml−1 clone 10D8 (Bio-
Legend), 2 µg ml−1 clone AA10, BioLegend) and anti-septin 7 (1 µg ml−1,
catalog no. 18991, IBL) for 16 h at 4 °C in blocking buffer. Following
three washes (5 min each) in washing buffer, cells were incubated with
Alexa Fluor 647 conjugated goat anti-mouse IgG and Alexa Fluor 555
conjugated goat anti-rabbit IgG (6 µg ml−1 in blocking buffer) for 1 h at
23 °C. Cell nuclei were counterstained with Hoechst 33342 (1 µg ml−1).
Cells were then washed three times (5 min each) in washing buffer and
once in 1× PBS for 10 min. Finally, cells were mounted using glucose
oxidase and β-mercaptoethylamine (50 mM Tris, 10 mM NaCl, pH 8.0,
supplemented with 50 mM β-mercaptoethylamine, 10% (w/v) glucose,
0.5 mg ml−1 glucose oxidase and 40 µg ml−1 catalase).

Data acquisition
HUVEC were imaged using a Marianas spinning-disk confocal micro-
scope equipped with a Yokogawa CSU-W1 scanning unit on an inverted
Zeiss Axio Observer Z1 microscope, controlled by SlideBook 6 (Intel-
ligent Imaging Innovations, Inc.) (Fig. 1). Images were acquired using
an Evolve 512 EMC CD camera (chip size, 512 × 512; Photometrics);
the objective used was an M27 ×63/1.4 numerical aperture (NA), oil
immersion (Plan-Apochromat). Data acquisition was performed with
a Nanoimager microscope (Oxford Nanoimaging) equipped with
an Olympus ×100/1.45 NA oil-immersion objective (Extended Data
Fig. 8). Imaging was performed using 405-, 488- and 640-nm lasers
for Hoechst-33342, AlexaFluor555 and AlexaFluor647 excitation,
respectively. Fluorescence was detected using a sCMOS camera (ORCA
Flash, 16 bit). For channel 0, a dichroic filter with bands of 498–551 and
576–620 nm was used and, for channel 1, a 665–705-nm dichroic filter.
Sequential multicolor acquisition was performed for AlexaFluor647,
AlexaFluor555 and Hoechst-33342. Using epifluorescence illumination,
a pulse of high laser power (90%) of the 640-nm laser was used, with
10,000 frames immediately acquired. The sample was then excited
with the 488-nm laser (13.7% laser power), with 500 frames acquired,
followed by 405-nm laser excitation (40% laser power) with acquisition

of a further 500 frames. For all acquisitions, an exposure time of 10 ms
was used.

Liquid Engine agent
Run times of methods implemented in NanoPyx through Liquid Engine
are locally stored on the user’s home folder inside a folder titled .liq-
uid_engine. For OpenCL implementations, the agent also stores an iden-
tification of the device and can detect hardware changes. Whenever a
method is run through Liquid Engine, the overseeing agent reads the
50 most recent recorded run times. If there are fewer than 50 recorded
runs but more than three, the agent will proceed with the available
recorded runs. However, if there are fewer than three runs recorded,
all Liquid Engine methods will revert to default benchmarks that can
be either supplied with the package or defined by the user. For each
implementation, the agent then divides the available corresponding
run times into two separate sets of equal length, one containing the
fastest run times and the other the slowest. We then calculate average
and standard deviation for both sets, namely FastAverage, FastStdDev,
SlowAverage and SlowStdDev (equations (1–5)). This split in run times
helps identify the start or end of a delay. By comparison against the set
of fastest run times, we ensure that previous delayed run times do not
skew normal average run time. On the other hand, the set of slowest run
times, although not guaranteed to be exactly like a delayed run time,
helps us estimate a lower bound to that which a higher-than-average
run time could look like.

Once the method has finished running, the agent checks whether
there was a delay (Delay). A delayed implementation is defined by hav-
ing its run time (Measured Run Time) higher than the recorded average
run time of the fastest runs, plus four times the standard deviation of
the fastest runs (equation (1)). If a delay is detected (Extended Data
Fig. 6), the agent will also calculate the delay factor (DelayFactor, equa-
tion (2)) and will activate a probabilistic approach that stochastically
selects which method to run.

This is performed using a logistic regression model that calcu-
lates the probability of the delay being present on the next run (Pdelay),
and by adjusting the expected run time of the delayed implementa-
tion (Adjusted Run Time) according to equation (3), while still using
FastAverage for all nondelayed implementations. The agent then picks
which implementation to use, based on probabilities assigned to each
implementation (given by PRun Time k for a given implementation k), using
1 over the square of adjusted run time and normalized for the run times
of all other implementations (equation (4)). This stochastic approach
ensures that the agent will still run the delayed implementation from
time to time to check whether that delay is still present.

During a subsequent run, the agent will evaluate whether there is
a delay. It will consider the delay as over when the measured run time
is either (1) lower than the slow average minus the standard deviation
(Std) of the slowest runs, or (2) lower than the fast average plus the
standard deviation of the fastest runs (as per equation (5)). Once the
delay is over, the agent will revert to selecting which implementation
to use based on the fast average of each implementation (as shown in
Extended Data Figs. 6 and 7).

Delay = True if Measured Run Time > (FastAverage + 4 × Std) (1)

DelayFactor = Measured Run Time
FastAverage (2)

Adjusted Run Time

= FastAverage × (1 − Pdelay) + FastAverage × DelayFactor × Pdelay
(3)

PRun Time k = ∑ 1
Run Time2 ×

1
Adjusted Run Time2k

2 (4)

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Delay = False if (Measured Run Time < (SlowAverage − SlowStdDev))

∨ (Measured Run Time > (FastAverage + FastStdDev))
(5)

Benchmarking run times
For laptop benchmarks, a MacBook Air M1 Pro with 16 GB of
random-access memory (RAM) and a 512-GB, solid-state drive (SSD)
was used. For the professional workstation, a custom-made desktop
computer was used containing an Intel i9-13900K, a NVIDIA RTX 4090
with 24 GB of dedicated video memory, a 1 TB SSD and 128 GB of DDR5
RAM. The first benchmark performed (Fig. 1 and Extended Data Fig. 2)
was a fivefold upsampling of the input data, using a Catmull–Rom13 inter-
polator. Benchmarks were performed on three different input images
with shapes of 1 × 10 × 10, 10 × 10 × 10, 10 × 100 × 100, 10 × 300 × 300,
100 × 300 × 300 and 500 × 300×300 (time points × height × width). The
second benchmarks (Extended Data Fig. 1) were nonlocal means denois-
ing performed on images of 200 × 200, 500 × 500 and 1,000 × 1,000
pixels using, respectively, 10, 100 and 50 as patch distance, with varying
patch size (5, 10, 20, 50 and 100). The third benchmarks (Extended Data
Figs. 2–5) were 2D convolutions using a kernel of varying size (1, 5, 9, 13,
17, 21), where all kernel values are 1, on images of varying size (100, 500,
1,000, 2,500, 5,000, 7,500, 10,000, 15,000 or 20,000 pixels for both
dimensions). Supplementary Tables 1–4 describe ten different hardware
set-ups used for benchmarking three different conditions of 2D con-
volution, Catmull–Rom interpolation and nonlocal means denoising.

Benchmarking delay management
For evaluation of Liquid Engine’s delay management capabilities, we
benchmarked its performance on 2D convolutions and eSRRF recon-
structions under induced delay conditions. The hardware used was
a high-end desktop with an Intel i9-13900K CPU, NVIDIA RTX 4090
GPU, 128-GB DDR5 RAM and 1-TB SSD. For the 2D convolution task,
we applied a 9 × 9 kernel on 6,000 × 6,000-pixel random images. To
simulate a delay, we used a separate Python process that allocated
>24 GB of GPU memory for irrelevant computations, thus overload-
ing the GPU. We executed 400 sequential convolutions, introducing
artificial delay during convolutions 101–200, and compared run times
with and without Liquid Engine optimization enabled. Similarly, for
eSRRF, we reconstructed a 100 × 100 × 100-pixel random volume with
parameters magnification = 5, radius = 1.5 and sensitivity = 1. Artificial
delay was induced on reconstructions 51–100 out of a total of 200. Run
times were again collected and analyzed with Liquid Engine on and off.
In both tasks, Liquid Engine detected abnormal delay during the over-
loaded period based on run time spikes; it then switched its imple-
mentation preference probabilistically to avoid using the delayed
GPU code.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used in the figures are either listed in Supplementary
Table 8 or are available for download via Zenodo at https://zenodo.
org/record/8318395 (ref. 29). Source data are provided with this paper.

Code availability
The NanoPyx python library and Jupyter Notebooks can be found in
our Github repository (https://github.com/HenriquesLab/NanoPyx).
The Liquid Engine Python library can be found in our GitHub repository
(https://github.com/HenriquesLab/LiquidEngine). The cookiecut-
ter templates can be found in this GitHub repository (https://github.
com/HenriquesLab/LiquidEngineCookieCutter). The napari plugin
implementing all NanoPyx methods can be found in a separate Github
repository (https://github.com/HenriquesLab/napari-NanoPyx).

References
29. Bruno S. et al. NanoPyx – figures’ data. Zenodo https://doi.org/

10.5281/zenodo.8318394 (2023).
30. Pylvänäinen, J. W. et al. Fast4DReg – fast registration of 4D

microscopy datasets. J. Cell Sci. 136, jcs260728 (2023).

Acknowledgements
We thank the previous developers of the NanoJ framework,
whose work inspired this study. In addition, we thank L. Royer and
J. Nunez-Iglesias for their invaluable feedback and guidance in
preparing our work. R. Henriques, P.M.P. and R.P. acknowledge support
from LS4FUTURE Associated Laboratory (no. LA/P/0087/2020). R.
Henriques, B.M.S. and I.C. acknowledge the support of the Gulbenkian
Foundation (Fundação Calouste Gulbenkian); the European Research
Council under the European Union’s Horizon 2020 research and
innovation program (grant agreement no. 101001332); the European
Commission through the Horizon Europe program (AI4LIFE project
with grant agreement no. 101057970-AI4LIFE and RT-SuperES project
with grant agreement no. 101099654-RT-SuperES); the European
Molecular Biology Organization Installation Grant (no. EMBO-
2020-IG-4734); and the Chan Zuckerberg Initiative Visual Proteomics
Grant (no. vpi-0000000044; https://doi.org/10.37921/743590vtudfp).
In addition, A.D.B. acknowledges the FCT 2021.06849.BD fellowship.
R. Henriques and B.M.S. also acknowledge that this project has been
made possible in part by a grant from the Chan Zuckerberg Initiative
DAF, an advised fund of Silicon Valley Community Foundations (Chan
Zuckerberg Initiative Napari Plugin Foundations Grants Cycle 2,
no. NP2-0000000085). P.M.P. and R.P. acknowledge support from
Fundação para a Ciência e Tecnologia (Portugal) project grant no.
PTDC/BIA-MIC/2422/2020 and the MOSTMICRO-ITQB R&D Unit (nos.
UIDB/04612/2020 and UIDP/04612/2020). P.M.P. acknowledges
support from La Caixa Junior Leader Fellowship (no. LCF/BQ/
PI20/11760012), financed by ‘la Caixa’ Foundation (ID 100010434) and
the European Union’s Horizon 2020 research and innovation program
under Marie Skłodowska-Curie grant agreement no. 847648, and
from a Maratona da Saúde award. This study was supported by the
Academy of Finland (no. 338537 to G.J.), the Sigrid Juselius Foundation
(to G.J.), the Cancer Society of Finland (Syöpäjärjestöt, to G.J.) and the
Solutions for Health strategic funding to Åbo Akademi University (to
G.J.). This research was supported by InFLAMES Flagship Program of
the Academy of Finland (decision no. 337531).

Author contributions
B.M.S., P.M.P., G.J. and R. Henriques conceived the study in its initial
form. B.M.S., I.C., A.D.B. and R. Henriques developed the NanoPyx
framework, with code contributions from R. Haase and G.J. B.M.S.,
I.C., A.D.B. and R. Henriques designed the Liquid Engine optimization
approach. B.M.S., I.C. and A.D.B. implemented the Liquid Engine tools.
G.F., R.P., P.M.P. and G.J. provided samples, data, critical feedback,
testing and guidance. B.M.S., I.C., A.D.B., G.F. and G.J. performed
experiments and analysis. B.M.S., P.M.P., G.J. and R. Henriques
acquired funding. B.M.S., P.M.P., R. Haase, G.J. and R. Henriques
supervised the work. B.M.S., I.C., A.D.B., G.J. and R. Henriques wrote
the manuscript, with input from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-024-02562-6.

Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41592-024-02562-6.

http://www.nature.com/naturemethods
https://zenodo.org/record/8318395
https://zenodo.org/record/8318395
https://github.com/HenriquesLab/NanoPyx
https://github.com/HenriquesLab/LiquidEngine
https://github.com/HenriquesLab/LiquidEngineCookieCutter
https://github.com/HenriquesLab/LiquidEngineCookieCutter
https://github.com/HenriquesLab/napari-NanoPyx
https://doi.org/10.5281/zenodo.8318394
https://doi.org/10.5281/zenodo.8318394
https://doi.org/10.37921/743590vtudfp
https://doi.org/10.1038/s41592-024-02562-6
https://doi.org/10.1038/s41592-024-02562-6

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Correspondence and requests for materials should be addressed to
Ricardo Henriques.

Peer review information Nature Methods thanks Christian Tischer and
the other, anonymous, reviewer(s) for their contribution to the peer

review of this work. Peer reviewer reports are available. Primary Handling
Editor: Rita Strack, in collaboration with the Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
http://www.nature.com/reprints

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 1 | Run times of non-local means denoising are dependent
on their implementation. The fastest run time for non-local means denoising
changes according to the parameters defined. The pixel-wise implementation
thrives when both the patch distance and patch size is relatively small.

The patch-wise implementation is virtually independent on the patch size and
although it sports higher memory costs its computational efficiency makes it an
attractive option for bigger patch sizes.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 2 | Ratio between the run times of OpenCL and other
implemented run types. Run times of a 5x Catmull-rom13 interpolation were
measured across multiple input data sizes using either a MacBook Air M1
(A), a Professional Workstation (B) or Google Colaboratory (C). Using the fastest

implementation can lead to up to 10x faster code execution. Area within dashed
lines correspond to kernel and image sizes where OpenCL is faster than other
implementations.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 3 | Ratio between the run times of a 2D convolution. Run times were measured across multiple input data sizes and kernel sizes using either a
MacBook Air M1 (A) or a Professional Workstation (B). Areas within dashed lines correspond to kernel and image sizes where OpenCL is faster than threaded CPU.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 4 | Run time of each implementation is dependent on the
shape of input data. A 2D convolution was performed on images with increasing
size using either a MacBook Air M1 Pro (A) or a professional workstation (B). A 21
by 21 kernel was used for the laptop and a 5x5 for the workstation. The run times

of each implementation vary according to the size of the input image. Bottom
panels correspond to zoomed in windows of top panels, indicated by dotted
boxes.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 5 | Kernel size impacts which implementation is the fastest.
A 2D convolution was performed on images with varying kernel sizes, ranging
from 1 to 21 (every 4) using either a MacBook Air M1 Pro on a 500x500 image
(A) or a professional workstation on 2500x2500 image (B). While unthreaded is

virtually always the slowest implementation, the threaded implementations are
only the fastest for small kernel sizes, after which a GPU-based implementation
becomes the fastest. Bottom panels correspond to zoomed in windows of top
panels, indicated by dotted boxes.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 6 | Schematic of the Agent decision making for delay
management. The agent identifies delays when an implementation’s run time
exceeds the fastest average plus four standard deviations (Equation 1). Upon
detection, it calculates a delay factor (Equation 2) and uses a probabilistic
approach with Logistic Regression to adjust run times (Equation 3) and

select implementations stochastically (Equation 4). This ensures delayed
implementations are periodically testes while favoring faster alternatives.
A delay is considered resolved when the run time falls below thresholds defined
in Equation 5, after which the agent reverts to selecting implementations based
on their fast average run times.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 7 | Example of delay management by the Liquid engine.
Multiple two-dimensional convolutions (A) and eSRRF analysis (B) were run
sequentially in a professional workstation. Starting from two initial benchmarks,
the Agent is responsible for informing the Liquid Engine on the best probable

implementation. An artificial delay was induced by overloading the GPU with
superfluous calculations in a separate Python interpreter. Dashed lines represent
average run times.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 8 | Microscopy image processing workflow using NanoPyx
methods. Through NanoPyx, users can correct drift, generate a super-resolved
image using eSRRF21, assess the quality of the generated image using Fourier
Ring Correlation (FRC)25, Image Decorrelation Analysis26, and NanoJ-SQUIRREL24

metrics. NanoPyx methods are made available as a Python library, Jupyter
Notebooks that can be run locally or through Google Colaboratory,
and as a napari plugin. Scale bars, 10 µm.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-024-02562-6

Extended Data Fig. 9 | Example channel registration of a calibration slide. NanoPyx allows users to perform channel registration based on the NanoJ22
implementation. Example data of calibration slide obtained from the freely available data in the Fast4DReg30 publication.

http://www.nature.com/naturemethods

α α

α

α κ

	Efficiently accelerated bioimage analysis with NanoPyx, a Liquid Engine-powered Python framework
	Online content
	Fig. 1 Comparative run times of multiple implementations of an algorithm, run on a consumer-grade laptop and a professional workstation.
	Fig. 2 NanoPyx achieves optimal performance by exploiting Liquid Engine’s self-optimization capabilities.
	Extended Data Fig. 1 Run times of non-local means denoising are dependent on their implementation.
	Extended Data Fig. 2 Ratio between the run times of OpenCL and other implemented run types.
	Extended Data Fig. 3 Ratio between the run times of a 2D convolution.
	Extended Data Fig. 4 Run time of each implementation is dependent on the shape of input data.
	Extended Data Fig. 5 Kernel size impacts which implementation is the fastest.
	Extended Data Fig. 6 Schematic of the Agent decision making for delay management.
	Extended Data Fig. 7 Example of delay management by the Liquid engine.
	Extended Data Fig. 8 Microscopy image processing workflow using NanoPyx methods.
	Extended Data Fig. 9 Example channel registration of a calibration slide.

