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The expanding scale and complexity of microscopy image datasets require

accelerated analytical workflows. NanoPyx meets this need through an
adaptive framework enhanced for high-speed analysis. At the core of
NanoPyx, the Liquid Engine dynamically generates optimized central
processing unit and graphics processing unit code variations, learning and
predicting the fastest based on input data and hardware. This data-driven
optimization achieves considerably faster processing, becoming broadly
relevant to reactive microscopy and computing fields requiring efficiency.

Super-resolution microscopy has revolutionized cell biology by ena-
bling fluorescence imaging at an unprecedented resolution'™*. However,
data collected from these experiments often require specific analytical
procedures, such asimage registration, resolution enhancement and
quantification of data quality and resolution. Many of these procedures
use open-sourceimage analysis software, particularly ImageJ°’/F1JI° or
napari’. The computational performance of each of these tools bears
notable implications for processing time, which becomes especially
salient given the increasing need for high-performance computingin
bioimaginganalysis. In this work we present NanoPyXx, a Python frame-
work for microscopy image analysis that exploits the Liquid Engine to
massively accelerate analysis workflows.

With the increasing use of deep learning, many bioimaging analy-
sis pipelines are now being developed in Python. Pure Python code
often runs on a single central processing unit (CPU) core, impact-
ing the performance and speed of Python frameworks. Alternative
solutions, such as Cython®, PyOpenCL’ and Numba'’, allow CPU and
graphics processing unit (GPU) parallelization, which can reduce
run times (Supplementary Note 1). However, identifying the swiftest
implementation depends onthe hardware, input dataand parameters.

Figurelillustrates acase where denoising the largerimage with a nonlo-
cal means (NLM) algorithm™"?is approximately two times faster when
using a CPU unthreaded strategy than a pixel-wise threaded imple-
mentation strategy on a GPU ina professional workstation (Fig.1cand
Supplementary Note 2). Notably, the same algorithm cannot be run on
thetesting laptop’s GPU with the same parameters due to architecture
limitations (Fig. 1b). This means that certain acceleration strategies
have hardware constraints and require a different approach. How-
ever, for other conditions (condition 2 on workstation and laptop and
condition 3 on laptop), GPU-based processing is a faster alternative
for the same NLM algorithm. Extended Data Figs. 1-5 further support
these observations, by illustrating run times for various implementa-
tionsacross distinct datasets and parameters on contrasting hardware
set-ups. Another example is Catmull-Rom” interpolations parallelized
in a pixel-wise manner (Extended Data Fig. 2), in which choosing an
OpenCL" implementation for lower-sized images could escalate run
time by several orders of magnitude compared with parallelized CPU
processing. Similarly, threaded CPU processing for larger-sized images
performed up to 30 times more slowly than GPU processing on profes-
sional workstations. Supplementary Tables 1-4 present benchmarks

'Instituto Gulbenkian de Ciéncia, Oeiras, Portugal. 2Gulbenkian Institute for Molecular Medicine, Oeiras, Portugal. ®Instituto Superior Técnico, Lisbon,
Portugal. *Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. ®Instituto de Tecnologia
Quimica e Biolégica Anténio Xavier, Universidade Nova de Lisboa, Oeiras, Portugal. °Turku Bioscience Centre, University of Turku and Abo Akademi
University, Turku, Finland. ’DFG Cluster of Excellence “Physics of Life”, TU Dresden, Dresden, Germany. ®Turku Bioimaging, University of Turku and Abo
Akademi University, Turku, Finland. °Faculty of Science and Engineering, Cell Biology, Abo Akademi University, Turku, Finland. °InFLAMES Research
Flagship Center, Abo Akademi University, Turku, Finland. "UCL-Laboratory for Molecular Cell Biology, University College London, London, UK.

"2These authors contributed equally: Bruno M. Saraiva, Inés Cunha, Anténio D. Brito.

e-mail: r.henriques@itgb.unl.pt

Nature Methods


http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-024-02562-6
http://orcid.org/0009-0001-1769-2627
http://orcid.org/0000-0003-0495-9529
http://orcid.org/0000-0001-5949-2327
http://orcid.org/0000-0002-1426-9540
http://orcid.org/0000-0002-9286-920X
http://orcid.org/0000-0002-2043-5234
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-024-02562-6&domain=pdf
mailto:r.henriques@itqb.unl.pt

Brief Communication

https://doi.org/10.1038/s41592-024-02562-6

a Condition 1 Fast 222
B 2 Condition 2 .
i Condition 3
Benchmarked task:
nonlocal 200
means image
denoising
1 OO Dimensions in pixels Slow @
b e} Runtime on laptop c Runtime on workstation
Condition Condition Condition Condition Condition Condition
Implementation 1 2 3 1 2 3
Hardware
€Al % limitation Qs
CPU threaded % 1,015s | 32.33s 1204s | 0.0831s
CPU T. dynamic % 990.0s | 30.03s 11.68's -
CPUT. guided T [ECIOERM VLI 166 -
CPU T. static % l 32.28s 1241s
CPU unthreaded % - 89.22s 3761s

Fig. 1| Comparative run times of multiple implementations of an algorithm,
runonaconsumer-grade laptop and a professional workstation. a-c, The
fastestimplementation (Supplementary Note 3) depends on various factors such
asthe shape of theinput data, method-specific parameters and the user device.
a, Nonlocal mean denoising is performed on images of varying shape using a
collection of patch sizes and distances (d). b, Run times of various conditions
when performing analysis on a consumer-grade laptop; condition 1 could not
be runonthe GPU due to hardware limitations. T. dynamic, threaded dynamic;
T.guided, threaded guided; T. static, threaded static. ¢, On a professional
workstation, faster implementation changes with each condition, illustrating
how itis affected by the input dataand method-specific parameters.

across ten different hardware set-ups, highlighting the limitations of
relying onasingle implementation, because it may not universally offer
the fastest performance.

Here we introduce NanoPyx, a high-performance bioimaging
analysis framework exploiting the Liquid Engine. It uses multiple varia-
tions (here called implementations; Supplementary Note 3) of the same
algorithm to perform a specific task. These variations include multiple
acceleration strategies, including PyOpenCL®, CUDA" (using CuPy"),
Cython®, Numba'®, Transonic” and Dask'® (Extended Data Figs. 1-5).
Although theseimplementations provide numerically identical outputs
forthe sameinput, their computational performance differs by exploit-
ing different computational strategies. The Liquid Engine features three
main components: (1) metaprogramming tools for multihardwareimple-
mentation (using Mako templates™ and a custom script, named c2cl;
Supplementary Note 4); (2) an automatic benchmarking system; and
(3) asupervisor machine learning-based agent that determines theideal
combination of implementations to maximize performance (Fig. 2).

Liquid Engine uses a machine learning system (Supplementary
Note 5) to predict the optimal combination of implementations
whileincluding device-dependent performance variations (Fig. 1and
Extended Data Figs. 1-5). When a user does not have access to one of
the implementations, Liquid Engine ignores it, guaranteeing that the
user willalwaysbe able to process theirimages. Dynamic benchmarking
substantially enhances computational speed for tasks involving input
data of varying size. This technique predicts when to switch between
different algorithmicimplementations, resultingin up to 24-fold faster
processing compared with use of the pixel-wise parallelization strat-
egy (CPU threaded; Fig. 2). Even when compared with running both
methods onaGPU, performing dynamicimplementation selection still
provides 1.75-fold acceleration (Supplementary Table 5).

Liquid Engine maintains ahistoric record of runtimesforeachimple-
mentation. Manual benchmarking can be initiated by the user, prompt-
ing Liquid Engine to profile the execution of each implementation and
identify the fastest (Supplementary Table 5). The system uses fuzzy logic®
(Supplementary Note 6) to identify the benchmarked example with the
most similar input properties, utilizing it as a baseline for the expected
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Fig. 2| NanoPyx achieves optimal performance by exploiting Liquid Engine’s
self-optimization capabilities. a, NanoPyx is built on top of the Liquid Engine,
which automatically benchmarks implementations of all tasks in a specific
workflow. Liquid Engine retains a historical record of the run times of each task
and inputused, allowing amachine learning-based agent to select the fastest
combination of implementations. b, Liquid Engine dynamically chooses the
fastestimplementation for each method, based onits input parameters. For
aworkflow performing denoising ona1,000 x 1,000 image, using NLM""?
(patch distance 50 pixels, patch size 50 pixels, sigma 1.0 and cut-off distance
(h) 0.1), followed by super-resolution of the data with eSRRF* (magnification x5,
radius 1.5, sensitivity 1and using intensity weighting), Liquid Engine selects the
fastest combination of implementations to substantially reduce run times.

execution time (Supplementary Table 5). This system enables NanoPyx
to make instant decisions based on an initially limited set of records,
progressively improving its performance as further data are obtained.
Each time a workflow is scheduled to run, a supervisor agent is
responsible for selecting the bestimplementation based on previous run
times; this selectionis made withoutimposing any substantial overhead
(Supplementary Table 5). Whenusers do not trigger manualbenchmark-
ing, theagentuses ‘factory-default’benchmarks until sufficient run times
have beenrecorded onthe user’s hardware. The agent constantly moni-
torsthe runtimes of all available methods, and can adapt to unexpected
delaysby ensuring that the optimalimplementationis selected. Inthe case
whereaseveredelayis detected, the agent predicts whether the optimal
implementation has changed and calculates the likelihood of that delay
being repeated in the future (Extended Data Fig. 6). Over the course of
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several sequential runs of the same method, we show that delay manage-
mentimproved average runtime by afactor of 1.8 foratwo-dimensional
(2D) convolution and by 1.5 for an established super-resolution radial
fluctuations (¢SRRF)* analysis (Extended DataFig. 7).

NanoPyx enhances and expands the super-resolution analysis
methods previously included in the NanoJ* * plugin family, and intro-
duces additional bioimage analysis techniques, including example
testing datasets (Supplementary Note 7). Extended Data Fig. 8 illus-
trates anexample workflow where NanoPyx starts by performing drift
correction. NanoPyx then allows super-resolution reconstructions
using SRRF* oritsimproved version, eSRRF”. Next, quality assessment
is performed by running Fourier ring correlation® and decorrelation
analysis®, and by calculating a SQUIRREL error map**. Besides the
aforementioned methods, NanoPyx also includes channel registration
(Extended DataFig. 9), multiple interpolators, 2D convolution, denois-
ing through NLM""* and several other bioimage analysis methods
(Supplementary Table 6). Although not all of these methods exploit the
advantages of Liquid Engine (Supplementary Table 6), we are actively
developing new parallelization strategies for the remaining methods.

NanoPyxisaccessibleasaPythonlibrary, which canbeinstalled via
either Python package index or our GitHub repository (Supplementary
Table5). Liquid Engineis also available as astandalone Python package
that is readily integrated in other projects. Alongside these Python
libraries, we provide cookiecutter (https://cookiecutter.readthedocs.
io) template files to help developers implement their own methods
using Liquid Engine (Supplementary Note 8). Secondly, we provide
Jupyter notebooks? (Supplementary Fig. 1a and Supplementary
Table 5). Users of these notebooks are not required to interact with
any code directly, because a graphical user interface is generated?.
Lastly, we developed a plugin for napari’,a Python image viewer (Sup-
plementary Fig. 1b). By offering these three distinct user interfaces,
we ensure that NanoPyx can be readily utilized by users irrespective
of their coding proficiency level. In NanoPyx’s repository, we have
provided usage guidelines for end-users along with several tutorials,
including videos (Supplementary Table 7), on how to run NanoPyx
throughany of its interfaces, and how to implement their own methods
exploiting optimization of Liquid Engine (Supplementary Note 8).

Looking ahead, a priority for NanoPyx is expanding support for
emerging techniques such as artificial intelligence-assisted imag-
ing and smart microscopes. Because these methods involve pro-
cessing datain real time during acquisition, NanoPyx’s accelerated
performance becomes critical. In addition, we aim to incorporate
more diverse processing workflows beyond currently implemented
methods.

Cumulatively, NanoPyx delivers adaptive performance optimiza-
tion to accelerate bioimage analysis while retaining modular design
and easy adoption. This flexible framework is important and timely,
given the expanding volumes of microscopy data and the need for
data-driven reactive microscopy. The optimization principles embod-
iedinits Liquid Engine can be extended to other scientific workloads
requiring high computational efficiency. As data scales expand, Nan-
oPyx offers researchers an actively improving platform to execute
demanding microscopy workflows.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Mammalian cell culture

Human umbilical vein endothelial cells (HUVEC) (PromoCell, cata-
log no. C-12203) were grown in endothelial cell growth medium
(PromocCell, catalog no. C-22010), with a supplementary mix ((Pro-
mocell, catalog no. C-39215) and 1% penicillin/streptomycin (Sigma);
Fig. 1). Endothelial primary cells from PO (commercial vial) were
expanded to a P3 stock frozen at —80 °C to standardize the experi-
mental replicates. A549 cells (The European Collection of Authenti-
cated Cell Cultures) were cultured in phenol red-free, high-glucose,
L-glutamine containing DMEM (Thermo Fisher Scientific), supple-
mented with10% (v/v) fetal bovine serum (Sigma) and 1% (v/v) penicil-
lin/streptomycin (Thermo Fisher Scientific), at 37 °C in an incubator
with 5% CO, (Extended DataFig. 8).

Sample preparation for microscopy

HUVEC were seeded in an eight-well, glass-bottom p-slide (Ibidi, cata-
log no. 80807) precoated with warm endothelial cell growth medium
without antibiotics (50,000 cells per well). Cells were then grown for
48 h, fixed with prewarmed 4% paraformaldehyde in PBS (Thermo
Fisher Scientific, catalog no. 28908) for 10 min at 37 °C and stained
with DAPI. A549 cells were seeded on an eight-well, glass-bottom p-slide
(ibidi) at density 0.05-0.10 x 10° cells cm™. Following 24 hincubation
at37 °C and under 5% CO,, cells were washed once with PBS and fixed
for20 minat23 °Cin 4% paraformaldehydein PBS. Following fixation,
cellswere washed three timesin PBS (5 mineach), quenched for 10 min
in a solution of 300 mM glycine (in PBS) and permeabilized using a
solution of 0.2% Triton-X (in PBS) for 20 min at 23 °C. Following three
washes (5 min each) in washing buffer (0.05% Tween-20 in PBS), cells
were blocked for 30 min in blocking buffer (5% BSA and 0.05% Tween-
20 in PBS). Samples were then incubated with a mix of anti-a-tubulin
antibodies (1 pg ml™ clone DMIA (Sigma), 2 pg ml™ clone 10D8 (Bio-
Legend), 2 pg ml™ clone AA10, BioLegend) and anti-septin 7 (1 pg ml 7,
catalog no. 18991, IBL) for 16 h at 4 °C in blocking buffer. Following
three washes (5 min each) in washing buffer, cells were incubated with
Alexa Fluor 647 conjugated goat anti-mouse IgG and Alexa Fluor 555
conjugated goat anti-rabbit IgG (6 pg ml™inblocking buffer) for1hat
23 °C. Cell nuclei were counterstained with Hoechst 33342 (1 pug ml™).
Cells were then washed three times (5 min each) in washing buffer and
once in 1x PBS for 10 min. Finally, cells were mounted using glucose
oxidase and -mercaptoethylamine (50 mM Tris,10 mM NaCl, pH 8.0,
supplemented with 50 mM 3-mercaptoethylamine, 10% (w/v) glucose,
0.5 mg ml™ glucose oxidase and 40 pg ml™ catalase).

Dataacquisition

HUVEC were imaged using a Marianas spinning-disk confocal micro-
scope equipped with a Yokogawa CSU-W1scanning unitonaninverted
Zeiss Axio Observer Z1 microscope, controlled by SlideBook 6 (Intel-
ligent Imaging Innovations, Inc.) (Fig. 1). Images were acquired using
an Evolve 512 EMC CD camera (chip size, 512 x 512; Photometrics);
the objective used was an M27 x63/1.4 numerical aperture (NA), oil
immersion (Plan-Apochromat). Data acquisition was performed with
a Nanoimager microscope (Oxford Nanoimaging) equipped with
an Olympus x100/1.45 NA oil-immersion objective (Extended Data
Fig. 8). Imaging was performed using 405-, 488- and 640-nm lasers
for Hoechst-33342, AlexaFluor555 and AlexaFluor647 excitation,
respectively. Fluorescence was detected usingasCMOS camera (ORCA
Flash, 16 bit). For channel 0, adichroicfilter with bands 0of498-551and
576-620 nmwas used and, for channel 1,a 665-705-nm dichroicfilter.
Sequential multicolor acquisition was performed for AlexaFluor647,
AlexaFluor555and Hoechst-33342. Using epifluorescence illumination,
a pulse of high laser power (90%) of the 640-nm laser was used, with
10,000 frames immediately acquired. The sample was then excited
with the 488-nm laser (13.7% laser power), with 500 frames acquired,
followed by 405-nm laser excitation (40% laser power) with acquisition

ofafurther 500 frames. For all acquisitions, an exposure time of 10 ms
was used.

Liquid Engine agent

Runtimes of methodsimplementedinNanoPyx through Liquid Engine
are locally stored on the user’s home folder inside a folder titled .liq-
uid_engine. For OpenCL implementations, the agent also storesaniden-
tification of the device and can detect hardware changes. Whenever a
method is run through Liquid Engine, the overseeing agent reads the
50 mostrecentrecorded runtimes. If there are fewer than 50 recorded
runs but more than three, the agent will proceed with the available
recorded runs. However, if there are fewer than three runs recorded,
all Liquid Engine methods will revert to default benchmarks that can
be either supplied with the package or defined by the user. For each
implementation, the agent then divides the available corresponding
run times into two separate sets of equal length, one containing the
fastest runtimes and the other the slowest. We then calculate average
and standard deviation for both sets, namely FastAverage, FastStdDeyv,
SlowAverage and SlowStdDeyv (equations (1-5)). This splitin runtimes
helpsidentify the start or end of a delay. By comparison against the set
of fastest run times, we ensure that previous delayed run times do not
skew normal average runtime. Onthe other hand, the set of slowest run
times, although not guaranteed to be exactly like a delayed run time,
helps us estimate a lower bound to that which a higher-than-average
run time could look like.

Once the method has finished running, the agent checks whether
there wasadelay (Delay). A delayed implementationis defined by hav-
ingitsruntime (Measured Run Time) higher thantherecorded average
run time of the fastest runs, plus four times the standard deviation of
the fastest runs (equation (1)). If a delay is detected (Extended Data
Fig. 6), the agent will also calculate the delay factor (DelayFactor, equa-
tion (2)) and will activate a probabilistic approach that stochastically
selects which method to run.

This is performed using a logistic regression model that calcu-
lates the probability of the delay being present on the next run (Pe,,),
and by adjusting the expected run time of the delayed implementa-
tion (Adjusted Run Time) according to equation (3), while still using
FastAverage for allnondelayed implementations. The agent then picks
whichimplementation to use, based on probabilities assigned to each
implementation (given by Py, 1ime« fOr agivenimplementation k), using
loverthesquare of adjusted runtime and normalized for the run times
of allotherimplementations (equation (4)). This stochasticapproach
ensures that the agent will still run the delayed implementation from
time to time to check whether that delay is still present.

Duringasubsequent run, the agent will evaluate whether thereis
adelay. It will consider the delay as over when the measured run time
iseither (1) lower than the slow average minus the standard deviation
(Std) of the slowest runs, or (2) lower than the fast average plus the
standard deviation of the fastest runs (as per equation (5)). Once the
delay is over, the agent will revert to selecting which implementation
to use based on the fast average of each implementation (as shownin
Extended Data Figs. 6 and 7).

Delay = True if Measured Run Time > (FastAverage + 4 x Std) (1)

Measured Run Time
DelayFaCtOr = W (2)

Adjusted Run Time
3

= FastAverage x (1 - Pdem) + FastAverage x DelayFactor x Pgejay

1 1
Prun Timek = 9 x 4
funmek Run Time? Adjusted Run Time2” @
k
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Delay = False if (Measured Run Time < (SlowAverage — SlowStdDev))

Vv (Measured Run Time > (FastAverage + FastStdDev))
©)

Benchmarking run times

For laptop benchmarks, a MacBook Air M1 Pro with 16 GB of
random-access memory (RAM) and a 512-GB, solid-state drive (SSD)
was used. For the professional workstation, a custom-made desktop
computer was used containing an Intel i9-13900K, aNVIDIARTX 4090
with 24 GB of dedicated video memory,al TB SSD and 128 GB of DDR5
RAM. The first benchmark performed (Fig.1and Extended Data Fig. 2)
wasafivefold upsampling of the input data, usinga Catmull-Rom" inter-
polator. Benchmarks were performed on three different input images
with shapes of 1 x10 x 10,10 x10 x 10, 10 x 100 x 100, 10 x 300 x 300,
100 %300 x 300 and 500 x 300x300 (time points x height x width). The
second benchmarks (Extended Data Fig. 1) were nonlocal means denois-
ing performed on images of 200 x 200, 500 x 500 and 1,000 x 1,000
pixels using, respectively, 10,100 and 50 as patch distance, with varying
patchsize(5,10,20,50 and100). The third benchmarks (Extended Data
Figs.2-5) were 2D convolutions using akernel of varying size(1,5,9,13,
17,21), where all kernel values are 1, onimages of varying size (100, 500,
1,000, 2,500, 5,000, 7,500, 10,000, 15,000 or 20,000 pixels for both
dimensions). Supplementary Tables1-4 describe ten different hardware
set-ups used for benchmarking three different conditions of 2D con-
volution, Catmull-Rom interpolation and nonlocal means denoising.

Benchmarking delay management

For evaluation of Liquid Engine’s delay management capabilities, we
benchmarked its performance on 2D convolutions and eSRRF recon-
structions under induced delay conditions. The hardware used was
a high-end desktop with an Intel i9-13900K CPU, NVIDIA RTX 4090
GPU, 128-GB DDR5 RAM and 1-TB SSD. For the 2D convolution task,
we applied a 9 x 9 kernel on 6,000 x 6,000-pixel random images. To
simulate a delay, we used a separate Python process that allocated
>24 GB of GPU memory for irrelevant computations, thus overload-
ing the GPU. We executed 400 sequential convolutions, introducing
artificial delay during convolutions101-200, and compared run times
with and without Liquid Engine optimization enabled. Similarly, for
eSRRF, wereconstructedal00 x 100 x 100-pixel random volume with
parameters magnification = 5, radius = 1.5 and sensitivity = 1. Artificial
delay wasinduced onreconstructions 51-100 out of atotal of 200. Run
times were again collected and analyzed with Liquid Engine on and off.
Inbothtasks, Liquid Engine detected abnormal delay during the over-
loaded period based on run time spikes; it then switched its imple-
mentation preference probabilistically to avoid using the delayed
GPU code.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets used in the figures are either listed in Supplementary
Table 8 or are available for download via Zenodo at https://zenodo.
org/record/8318395 (ref. 29). Source dataare provided with this paper.

Code availability

The NanoPyx python library and Jupyter Notebooks can be found in
our Github repository (https://github.com/HenriquesLab/NanoPyx).
TheLiquid Engine Pythonlibrary canbe foundin our GitHub repository
(https://github.com/HenriquesLab/LiquidEngine). The cookiecut-
ter templates can be found in this GitHub repository (https://github.
com/HenriquesLab/LiquidEngineCookieCutter). The napari plugin
implementing all NanoPyx methods canbe foundinaseparate Github
repository (https://github.com/HenriquesLab/napari-NanoPyx).
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555 (ThermoFisher Catalog #A-21428) (1:200).
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Validation Anti-a-Tubulin antibody (Catalog #T6199). Isotype: I1gG1. Verified reactivity (VR): yeast, mouse, amphibian, human, rat, chicken, fungi,
bovine. Antibody Type (AT): Monoclonal. Host species: Mouse. Concentration 1mg/ml. Application in immunoblotting,
immunocytochemistry, immunofluorescence radioimmunoassay and western blot. Independent enhanced validation: antibody
specificity demonstrated using multiple antibodies against target in immunohistochemistry or immunocytochemistry.

Anti-Tubulin-a Antibody (Catalog #625901). Isotype: Mouse 1gM, k. VR: Human, mouse, rat and all species. AT: monoclonal. Host
species: Mouse. Concentration 0.5mg/ml. Application in western blotting (quality tested), immunohistochemistry — Paraffin and
immunocytochemistry.

Anti-Human Septin 7 1gG (IBL, Catalog #JP18991). Isotype: I1gG. VR: Human, mouse and rat. AT: Polyclonal. Host species: Rabbit.
Concentration 0.1mg/ml. Application in western blotting, immunohistochemistry and immunoprecipitation.

Anti-Tubulin Beta 3 (TUBB3) (BioLegend, Catalog #657401). Isotype: Mouse IgG2a. VR: Mouse, Rat, Human. AT: Monoclonal. Host
species: mouse. Concentration: 0.5mg/ml. Application in western blotting (quality tested), immunocytochemistry (verified), flow
cytometry, immunofluorescence microscopy and spatial biology (IBEX). Knock-out validated.

Conjugated F(ab')2-goat anti-mouse IgG — Alexa Fluor 647 (ThermoFisher, Catalog #A-21237). Isotype: IgG. VR: Mouse. AT: Polyclonal.
Host species: Goat/lgG. Concentration 2mg/ml. Application in western blotting, immunohistochemistry and immunocytochemistry.
Cross adsorbed: against human IgG and serum.

Conjugated Full antibody-Goat anti-Rabbit 1gG - Alexa Fluor 555 (ThermoFisher Catalog #A-21428); Isotype: IgG. VR: Rabbit. AT:
Polyclonal. Host species: Goat/IgG. Concentration: 2mg/ml. Application in immunohistochemistry, immunocytochemistry and flow
cytometry. Cross adsorbed: against human IgG, human serum, mouse IgG, mouse serum and bovine serum.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) A549 cell line (The European Coollection of Authenticated Cell Cultures (from ECACC Catalog # 86012804); Human Umbilical
Vein Endothelial Cells (HUVEC) (from PromoCell C-12203)

Authentication Cell lines were not authenticated

Mycoplasma contamination Cells lines used tested negative for Mycoplasma contamination

Commonly misidentified lines  None
(See ICLAC register)
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