Cutting-edge super-resolution image analysis in napari through NanoJ


Funding Image
Agency: CZI
Type: Applications - napari Plugin Foundations grants
Principal Investigator: Ricardo Henriques
Investigators: Bruno Saraiva, Ricardo Henriques
Start-date: January 2023
End-date: December 2023
Website: https://www.napari-hub.org/plugins/napari-nanopyx

NanoJ is an instrumental ImageJ-based computational framework that provides several analytical tasks to enhance or enable super-resolution microscopy. It also hosts popular GPU-based algorithms, including NanoJ-SRRF, which provides the capacity to super-resolve images from conventional microscopes without needing super-resolution specific hardware; and NanoJ-SQUIRREL, which quantitatively detects artifacts created by super-resolution methods. While the use of NanoJ by the scientific community continues to increase, the aged libraries it depends on constrains its development.

This project will refactor the ImageJ NanoJ plugin framework, including SRRF, into an ecosystem of napari plugins to enable next-generation high-performance, super-resolution microscopy analysis.

Technology explored


NanoPyx NanoPyx Newest update: 2025-07-02
NanoJ-eSRRF NanoJ-eSRRF Newest update: 2025-05-30
NanoJ NanoJ Newest update: 2024-03-22
NanoJ-SRRF NanoJ-SRRF Newest update: 2024-03-22
NanoJ-SQUIRREL NanoJ-SQUIRREL Newest update: 2020-09-10

Supported publications


Rxiv-Maker: an automated template engine for streamlined scientific publications
Bruno M. Saraiva, Guillaume Jacquemet, Ricardo Henriques
Preprint published in Zenodo, July 2025
Technologies: Rxiv-Maker ()
Funded by: CZI, EMBO, ERC, H2021 and H2022
DOI: 10.5281/zenodo.15805470
Efficiently accelerated bioimage analysis with NanoPyx, a Liquid Engine-powered Python framework
Bruno M. Saraiva, Inês Cunha, António D. Brito, Gautier Follain, Raquel Portela, Robert Haase, Pedro M. Pereira, Guillaume Jacquemet, Ricardo Henriques
Paper published in Nature Methods, January 2025
Technologies: Fast4DReg (), NanoJ (), NanoJ-eSRRF (), NanoJ-SQUIRREL () and NanoPyx ()
Funded by: CZI, EMBO, ERC, FCT, H2021 and H2022
News: Tempo.pt, Nouvelles du monde and RTP
DOI: 10.1038/s41592-024-02562-6
The rise of data‐driven microscopy powered by machine learning
Leonor Morgado, Estibaliz Gómez‐de‐Mariscal, Hannah S. Heil, Ricardo Henriques
Review published in Journal of Microscopy, March 2024
Technologies: NanoJ () and NanoJ-Fluidics ()
Funded by: CZI, EMBO, ERC, FCT, H2021 and H2022
DOI: 10.1111/jmi.13282
Harnessing artificial intelligence to reduce phototoxicity in live imaging
Estibaliz Gómez-de-Mariscal, Mario Del Rosario, Joanna W. Pylvänäinen, Guillaume Jacquemet, Ricardo Henriques
Perspective published in Journal of Cell Science, February 2024
Technologies: BioImage Model Zoo (), CARE (), DeepBacs (), NanoJ-eSRRF (), NanoJ-SQUIRREL (), NanoJ-SRRF () and ZeroCostDL4Mic ()
Funded by: CZI, EMBO, ERC, H2021 and H2022
DOI: 10.1242/jcs.261545

News


  • 2025-02-28: News outlet EUTOPIA highlights Saraiva et al. Nature Methods 2025 [external link]
  • 2025-01-25: News outlet Tempo.pt highlights Saraiva et al. Nature Methods 2025 [external link]
  • 2025-01-09: News outlet Nouvelles du monde highlights Saraiva et al. Nature Methods 2025 [external link]
  • 2025-01-06: News outlet RTP highlights Saraiva et al. Nature Methods 2025 [external link]