Artificial Intelligence for Image Data Analysis in the Life Sciences


Funding Image
Alias: AI4Life
Agency: H2021
Type: INFRA
Principal Investigator: Anna Kreshuk, Florian Jug
Investigators: Anna Kreshuk, Florian Jug, Ricardo Henriques, Wei Ouyang, Arrate Muñoz-Barrutia, Emma Lundberg, Matthew Hartley
Start-date: September 2021
End-date: August 2025
DOI: 10.3030/101057970

The project aims to help life scientists apply machine learning for image analysis by providing sustainable research infrastructure services. It will build an open repository of AI models for bioimage analysis and offer services to deliver these to non-experts. The initiative seeks to prepare life scientists to exploit AI methods and drive adoption of best practices through ample training activities, open standards, and community contributions. Its consortium unites AI researchers, imaging platform providers, European research infrastructures, and open source image analysis tools to unlock the potential of AI for the life sciences.

Technology explored


BioImage Model Zoo BioImage Model Zoo
ZeroCostDL4Mic ZeroCostDL4Mic

Supported publications


PhotoFiTT - A Quantitative Framework for Assessing Phototoxicity in Live-Cell Microscopy Experiments
Mario Del Rosario, Estibaliz Gómez-de-Mariscal, Leonor Morgado, Raquel Portela, Guillaume Jacquemet, Pedro M. Pereira, Ricardo Henriques
Preprint published in bioRxiv, July 2024
Technologies: CARE, DL4MicEverywhere, NanoJ-SRRF, PhotoFiTT and ZeroCostDL4Mic
Funded by: CZI, EMBO, ERC, FCT, H2021 and H2022
DOI: 10.1101/2024.07.16.603046
DL4MicEverywhere - deep learning for microscopy made flexible, shareable and reproducible
Iván Hidalgo-Cenalmor, Joanna W. Pylvänäinen, Mariana G. Ferreira, Craig T. Russell, Alon Saguy, Ignacio Arganda-Carreras, Yoav Shechtman, Guillaume Jacquemet, Ricardo Henriques, Estibaliz Gómez-de-Mariscal
Paper published in Nature Methods, May 2024
Technologies: BioImage Model Zoo, DL4MicEverywhere and ZeroCostDL4Mic
Funded by: EMBO, ERC, H2021 and H2022
News: Labonline, MSN, AZoRobotics and Aamuset Kaupunkimedia
Blogs: news-medical.net
DOI: 10.1038/s41592-024-02295-6
The rise of data‐driven microscopy powered by machine learning
Leonor Morgado, Estibaliz Gómez‐de‐Mariscal, Hannah S. Heil, Ricardo Henriques
Review published in Journal of Microscopy, March 2024
Technologies: NanoJ and NanoJ-Fluidics
Funded by: CZI, EMBO, ERC, FCT, H2021 and H2022
DOI: 10.1111/jmi.13282
Harnessing artificial intelligence to reduce phototoxicity in live imaging
Estibaliz Gómez-de-Mariscal, Mario Del Rosario, Joanna W. Pylvänäinen, Guillaume Jacquemet, Ricardo Henriques
Perspective published in Journal of Cell Science, February 2024
Technologies: BioImage Model Zoo, CARE, DeepBacs, NanoJ-SRRF and ZeroCostDL4Mic
Funded by: CZI, EMBO, ERC, H2021 and H2022
DOI: 10.1242/jcs.261545
Nano-org, a functional resource for single-molecule localisation microscopy data
Sandeep Shirgill, Daniel J Nieves, Jeremy A Pike, Mohammad A Ahmed, Mohammed HH Baragilly, Kylie Savoye, Jonathan Worboys, Khodor Hazime, Adrian Garcia, David J Williamson
Preprint published in bioRxiv, January 2024
Technologies: nano-org
Funded by: EMBO, ERC, H2021 and H2022
DOI: 10.1101/2024.08.06.606779
High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation
Romain F. Laine, Hannah S. Heil, Simao Coelho, Jonathon Nixon-Abell, Angélique Jimenez, Theresa Wiesner, Damián Martínez, Tommaso Galgani, Louise Régnier, Aki Stubb, Gautier Follain, Samantha Webster, Jesse Goyette, Aurelien Dauphin, Audrey Salles, Siân Culley, Guillaume Jacquemet, Bassam Hajj, Christophe Leterrier, Ricardo Henriques
Paper published in Nature Methods, November 2023
Technologies: CARE, NanoJ, NanoJ-eSRRF, NanoJ-SQUIRREL, NanoJ-SRRF, NanoPyx and Nuclear-Pores as references
Funded by: CZI, EMBO, ERC, FCT, H2021, H2022, InnOValley and Wellcome Trust
News: Photonics.com, The Science Times, Optics.org and Phys.org
Blogs: Springer Nature Protocols and Methods Community
DOI: 10.1038/s41592-023-02057-w
Transertion and cell geometry organize the Escherichia coli nucleoid during rapid growth
Christoph Spahn, Stuart Middlemiss, Estibaliz Gómez-de-Mariscal, Ricardo Henriques, Helge B. Bode, Séamus Holden, Mike Heilemann
Preprint published in bioRxiv, October 2023
Technologies: CARE, DeepBacs and ZeroCostDL4Mic
Funded by: EMBO, ERC, H2021 and H2022
DOI: 10.1101/2023.10.16.562172
NanoPyx - super-fast bioimage analysis powered by adaptive machine learning
Bruno M. Saraiva, Inês M. Cunha, António D. Brito, Gautier Follain, Raquel Portela, Robert Haase, Pedro M. Pereira, Guillaume Jacquemet, Ricardo Henriques
Preprint published in bioRxiv, August 2023
Technologies: CARE, NanoJ, NanoJ-eSRRF, NanoJ-SQUIRREL, NanoJ-SRRF, NanoJ-VirusMapper and NanoPyx
Funded by: CZI, EMBO, ERC, FCT, H2021 and H2022
DOI: 10.1101/2023.08.13.553080
Live-cell imaging in the deep learning era
Joanna W Pylvänäinen, Estibaliz Gómez-de-Mariscal, Ricardo Henriques, Guillaume Jacquemet
Review published in Current Opinion in Cell Biology, January 2023
Technologies: BioImage Model Zoo, CARE, DeepBacs, Fast4DReg, NanoJ, NanoJ-eSRRF, NanoJ-Fluidics, NanoJ-SRRF and ZeroCostDL4Mic
Funded by: CZI, EMBO, ERC and H2021
DOI: 10.1016/j.ceb.2023.102271
This microtubule does not exist - Super-resolution microscopy image generation by a diffusion model
Alon Saguy, Tav Nahimov, Maia Lehrman, Estibaliz Gómez-de-Mariscal, Iván Hidalgo-Cenalmor, Onit Alalouf, Ricardo Henriques, Yoav Shechtman
Preprint published in bioRxiv, January 2023
Technologies: CARE and ZeroCostDL4Mic
Funded by: CZI, EMBO, ERC, H2021 and H2022
DOI: 10.1101/2023.07.06.548004
Roadmap on deep learning for microscopy
Giovanni Volpe, Carolina Wählby, Lei Tian, Michael Hecht, Artur Yakimovich, Kristina Monakhova, Laura Waller, Ivo F Sbalzarini, Christopher A Metzler, Mingyang Xie, Kevin Zhang, Isaac CD Lenton, Halina Rubinsztein-Dunlop, Daniel Brunner, Bijie Bai, Aydogan Ozcan, Daniel Midtvedt, Hao Wang, Nataša Sladoje, Joakim Lindblad, Jason T Smith, Marien Ochoa, Margarida Barroso, Xavier Intes, Tong Qiu, Li-Yu Yu, Sixian You, Yongtao Liu, Maxim A Ziatdinov, Sergei V Kalinin, Arlo Sheridan, Uri Manor, Elias Nehme, Ofri Goldenberg, Yoav Shechtman, Henrik K Moberg, Christoph Langhammer, Barbora Špačková, Saga Helgadottir, Benjamin Midtvedt, Aykut Argun, Tobias Thalheim, Frank Cichos, Stefano Bo, Lars Hubatsch, Jesus Pineda, Carlo Manzo, Harshith Bachimanchi, Erik Selander, Antoni Homs-Corbera, Martin Fränzl, Kevin de Haan, Yair Rivenson, Zofia Korczak, Caroline Beck Adiels, Mite Mijalkov, Dániel Veréb, Yu-Wei Chang, Joana B Pereira, Damian Matuszewski, Gustaf Kylberg, Ida-Maria Sintorn, Juan C Caicedo, Beth A Cimini, Muyinatu A Lediju Bell, Bruno M Saraiva, Guillaume Jacquemet, Ricardo Henriques, Wei Ouyang, Trang Le, Estibaliz Gómez-de-Mariscal, Daniel Sage, Arrate Muñoz-Barrutia, Ebba Josefson Lindqvist, Johanna Bergman
Preprint published in arXiv, January 2023
Technologies: BioImage Model Zoo, CARE and ZeroCostDL4Mic
Funded by: CZI, EMBO, ERC and H2021
DOI: 10.48550/arXiv.2303.03793
Trimethine cyanine dyes as NA-sensitive probes for visualization of cell compartments in fluorescence microscopy
Daria Aristova, Roman Selin, Hannah Sophie Heil, Viktoriia Kosach, Yuriy Slominsky, Sergiy Yarmoluk, Vasyl Pekhnyo, Vladyslava Kovalska, Ricardo Henriques, Andriy Mokhir
Paper published in ACS omega, January 2022
Funded by: EMBO, ERC and H2021
DOI: 10.1021/acsomega.2c05231
Bioimage model zoo - a community-driven resource for accessible deep learning in bioimage analysis
Wei Ouyang, Fynn Beuttenmueller, Estibaliz Gómez-de-Mariscal, Constantin Pape, Tom Burke, Carlos Garcia-López-de-Haro, Craig Russell, Lucía Moya-Sans, Cristina de-la-Torre-Gutiérrez, Deborah Schmidt, Dominik Kutra, Maksim Novikov, Martin Weigert, Uwe Schmidt, Peter Bankhead, Guillaume Jacquemet, Daniel Sage, Ricardo Henriques, Arrate Muñoz-Barrutia, Emma Lundberg, Florian Jug, Anna Kreshuk
Preprint published in BioRxiv, January 2022
Technologies: BioImage Model Zoo and ZeroCostDL4Mic
Funded by: CZI, EMBO, ERC and H2021
DOI: 10.1101/2022.06.07.495102